-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sampling.py
271 lines (219 loc) · 10.5 KB
/
train_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# -*- coding: utf-8 -*-
"""
HAN mini-batch training by RandomWalkSampler.
note: This demo use RandomWalkSampler to sample neighbors, it's hard to get all neighbors when valid or test,
so we sampled twice as many neighbors during val/test than training.
"""
import dgl
import numpy
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.nn.pytorch import GATConv
from dgl.sampling import RandomWalkNeighborSampler
from sklearn.metrics import f1_score
from torch.utils.data import DataLoader
from model_hetero import SemanticAttention
from utils import EarlyStopping, set_random_seed
class HANLayer(torch.nn.Module):
"""
HAN layer.
Arguments
---------
num_metapath : number of metapath based sub-graph
in_size : input feature dimension
out_size : output feature dimension
layer_num_heads : number of attention heads
dropout : Dropout probability
Inputs
------
g : DGLHeteroGraph
The heterogeneous graph
h : tensor
Input features
Outputs
-------
tensor
The output feature
"""
def __init__(self, num_metapath, in_size, out_size, layer_num_heads, dropout):
super(HANLayer, self).__init__()
# One GAT layer for each meta path based adjacency matrix
self.gat_layers = nn.ModuleList()
for i in range(num_metapath):
self.gat_layers.append(GATConv(in_size, out_size, layer_num_heads,
dropout, dropout, activation=F.elu,
allow_zero_in_degree=True))
self.semantic_attention = SemanticAttention(in_size=out_size * layer_num_heads)
self.num_metapath = num_metapath
def forward(self, block_list, h_list):
semantic_embeddings = []
for i, block in enumerate(block_list):
semantic_embeddings.append(self.gat_layers[i](block, h_list[i]).flatten(1))
semantic_embeddings = torch.stack(semantic_embeddings, dim=1) # (N, M, D * K)
return self.semantic_attention(semantic_embeddings) # (N, D * K)
class HAN(nn.Module):
def __init__(self, num_metapath, in_size, hidden_size, out_size, num_heads, dropout):
super(HAN, self).__init__()
self.layers = nn.ModuleList()
self.layers.append(HANLayer(num_metapath, in_size, hidden_size, num_heads[0], dropout))
for l in range(1, len(num_heads)):
self.layers.append(HANLayer(num_metapath, hidden_size * num_heads[l - 1],
hidden_size, num_heads[l], dropout))
self.predict = nn.Linear(hidden_size * num_heads[-1], out_size)
def forward(self, g, h):
for gnn in self.layers:
h = gnn(g, h)
return self.predict(h)
class HANSampler(object):
def __init__(self, g, metapath_list, num_neighbors):
self.sampler_list = []
for metapath in metapath_list:
# note: random walk may get same route(same edge), which will be removed in the sampled graph.
# So the sampled graph's edges may be less than num_random_walks(num_neighbors).
self.sampler_list.append(RandomWalkNeighborSampler(G=g,
num_traversals=1,
termination_prob=0,
num_random_walks=num_neighbors,
num_neighbors=num_neighbors,
metapath=metapath))
def sample_blocks(self, seeds):
block_list = []
for sampler in self.sampler_list:
frontier = sampler(seeds)
# add self loop
frontier = dgl.remove_self_loop(frontier)
frontier.add_edges(torch.tensor(seeds), torch.tensor(seeds))
block = dgl.to_block(frontier, seeds)
block_list.append(block)
return seeds, block_list
def score(logits, labels):
_, indices = torch.max(logits, dim=1)
prediction = indices.long().cpu().numpy()
labels = labels.cpu().numpy()
accuracy = (prediction == labels).sum() / len(prediction)
micro_f1 = f1_score(labels, prediction, average='micro')
macro_f1 = f1_score(labels, prediction, average='macro')
return accuracy, micro_f1, macro_f1
def evaluate(model, g, metapath_list, num_neighbors, features, labels, val_nid, loss_fcn, batch_size):
model.eval()
han_valid_sampler = HANSampler(g, metapath_list, num_neighbors=num_neighbors * 2)
dataloader = DataLoader(
dataset=val_nid,
batch_size=batch_size,
collate_fn=han_valid_sampler.sample_blocks,
shuffle=False,
drop_last=False,
num_workers=4)
correct = total = 0
prediction_list = []
labels_list = []
with torch.no_grad():
for step, (seeds, blocks) in enumerate(dataloader):
h_list = load_subtensors(blocks, features)
blocks = [block.to(args['device']) for block in blocks]
hs = [h.to(args['device']) for h in h_list]
logits = model(blocks, hs)
loss = loss_fcn(logits, labels[numpy.asarray(seeds)].to(args['device']))
# get each predict label
_, indices = torch.max(logits, dim=1)
prediction = indices.long().cpu().numpy()
labels_batch = labels[numpy.asarray(seeds)].cpu().numpy()
prediction_list.append(prediction)
labels_list.append(labels_batch)
correct += (prediction == labels_batch).sum()
total += prediction.shape[0]
total_prediction = numpy.concatenate(prediction_list)
total_labels = numpy.concatenate(labels_list)
micro_f1 = f1_score(total_labels, total_prediction, average='micro')
macro_f1 = f1_score(total_labels, total_prediction, average='macro')
accuracy = correct / total
return loss, accuracy, micro_f1, macro_f1
def load_subtensors(blocks, features):
h_list = []
for block in blocks:
input_nodes = block.srcdata[dgl.NID]
h_list.append(features[input_nodes])
return h_list
def main(args):
# acm data
if args['dataset'] == 'ACMRaw':
from utils import load_data
g, features, labels, n_classes, train_nid, val_nid, test_nid, train_mask, \
val_mask, test_mask = load_data('ACMRaw')
metapath_list = [['pa', 'ap'], ['pf', 'fp']]
else:
raise NotImplementedError('Unsupported dataset {}'.format(args['dataset']))
# Is it need to set different neighbors numbers for different meta-path based graph?
num_neighbors = args['num_neighbors']
han_sampler = HANSampler(g, metapath_list, num_neighbors)
# Create PyTorch DataLoader for constructing blocks
dataloader = DataLoader(
dataset=train_nid,
batch_size=args['batch_size'],
collate_fn=han_sampler.sample_blocks,
shuffle=True,
drop_last=False,
num_workers=4)
model = HAN(num_metapath=len(metapath_list),
in_size=features.shape[1],
hidden_size=args['hidden_units'],
out_size=n_classes,
num_heads=args['num_heads'],
dropout=args['dropout']).to(args['device'])
total_params = sum(p.numel() for p in model.parameters())
print("total_params: {:d}".format(total_params))
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("total trainable params: {:d}".format(total_trainable_params))
stopper = EarlyStopping(patience=args['patience'])
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args['lr'],
weight_decay=args['weight_decay'])
for epoch in range(args['num_epochs']):
model.train()
for step, (seeds, blocks) in enumerate(dataloader):
h_list = load_subtensors(blocks, features)
blocks = [block.to(args['device']) for block in blocks]
hs = [h.to(args['device']) for h in h_list]
logits = model(blocks, hs)
loss = loss_fn(logits, labels[numpy.asarray(seeds)].to(args['device']))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print info in each batch
train_acc, train_micro_f1, train_macro_f1 = score(logits, labels[numpy.asarray(seeds)])
print(
"Epoch {:d} | loss: {:.4f} | train_acc: {:.4f} | train_micro_f1: {:.4f} | train_macro_f1: {:.4f}".format(
epoch + 1, loss, train_acc, train_micro_f1, train_macro_f1
))
val_loss, val_acc, val_micro_f1, val_macro_f1 = evaluate(model, g, metapath_list, num_neighbors, features,
labels, val_nid, loss_fn, args['batch_size'])
early_stop = stopper.step(val_loss.data.item(), val_acc, model)
print('Epoch {:d} | Val loss {:.4f} | Val Accuracy {:.4f} | Val Micro f1 {:.4f} | Val Macro f1 {:.4f}'.format(
epoch + 1, val_loss.item(), val_acc, val_micro_f1, val_macro_f1))
if early_stop:
break
stopper.load_checkpoint(model)
test_loss, test_acc, test_micro_f1, test_macro_f1 = evaluate(model, g, metapath_list, num_neighbors, features,
labels, test_nid, loss_fn, args['batch_size'])
print('Test loss {:.4f} | Test Accuracy {:.4f} | Test Micro f1 {:.4f} | Test Macro f1 {:.4f}'.format(
test_loss.item(), test_acc, test_micro_f1, test_macro_f1))
if __name__ == '__main__':
parser = argparse.ArgumentParser('mini-batch HAN')
parser.add_argument('-s', '--seed', type=int, default=1,
help='Random seed')
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--num_neighbors', type=int, default=20)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--num_heads', type=list, default=[8])
parser.add_argument('--hidden_units', type=int, default=8)
parser.add_argument('--dropout', type=float, default=0.6)
parser.add_argument('--weight_decay', type=float, default=0.001)
parser.add_argument('--num_epochs', type=int, default=100)
parser.add_argument('--patience', type=int, default=10)
parser.add_argument('--dataset', type=str, default='ACMRaw')
parser.add_argument('--device', type=str, default='cuda:0')
args = parser.parse_args().__dict__
# set_random_seed(args['seed'])
main(args)