-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_nn.py
102 lines (72 loc) · 2.44 KB
/
random_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1,6, (5,5))
self.conv2 = nn.Conv2d(6,16,5)
# fully connected, input must be 32, because after polling and convolution operationr our image resize to 5x5 pixel
self.fc1 = nn.Linear(16*5*5,120)
self.fc2 = nn.Linear(120,80)
self.fc3 = nn.Linear(80,10)
def forward(self, x):
print("shape 1 x={}".format(x.shape))
x = F.relu(self.conv1(x))
print("shape 2 x={}".format(x.shape))
x = F.max_pool2d(x, (2,2))
print("shape 3 x={}".format(x.shape))
x = F.relu(self.conv2(x))
print("shape 4 x={}".format(x.shape))
x = F.max_pool2d(x, 2)
print("shape 5 x={}".format(x.shape))
x = x.view(-1, self.num_flat_features(x))
print("shape4 x={}".format(x.shape))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight
for a in params:
print(a.size()) # conv1's .weight
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
net.zero_grad()
# dx = 0.01*torch.ones(1,10)
# out.backward(torch.randn(1, 10))
output = net(input)
target = torch.arange(1, 11) # a dummy target, for example
target = target.view(1, -1) # make it the same shape as output
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
net.zero_grad() # zeroes the gradient buffers of all parameters
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
# weight = weight - learning_rate * gradient
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)
import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update