-
Notifications
You must be signed in to change notification settings - Fork 2
/
streamlitapp.py
567 lines (503 loc) · 26.3 KB
/
streamlitapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 15 16:20:47 2022
@author: krish
"""
# %% Libraries
import streamlit as st
from st_aggrid import AgGrid
import pandas as pd
import numpy as np
from datetime import datetime
import datetime as dt
import calendar
import json
# Plotly
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.graph_objects as go
# Other viz
import seaborn as sns
import matplotlib.pyplot as plt
# Runtime Configuration Parameters for Matplotlib
plt.rcParams['font.family'] = 'Verdana'
plt.style.use('ggplot')
# Warnings
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
# For Customer Segmentation
# Clustering
from yellowbrick.cluster import KElbowVisualizer, SilhouetteVisualizer
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn import metrics
def main():
# Set page config
st.set_page_config(layout="wide")
# st. set_page_config(layout="wide")
page = st.sidebar.radio("Navigation Pane:", ["Product Recommendation using Market Basket Analysis", "Customer Segmentation based on RFM Analysis", "Dashboard"])
#Add sidebar to the app
st.sidebar.markdown("")
st.sidebar.markdown("")
st.sidebar.markdown("")
st.sidebar.markdown("")
st.sidebar.markdown("")
st.sidebar.markdown("")
st.sidebar.markdown("##### Made by: :computer:")
st.sidebar.markdown("### Aditi Krishna :dog:")
# Read clean dataset
retail = pd.read_csv('CleanRetailData.csv')
# List of all countries in dataset
country_list = list(dict(retail['Country'].value_counts()).keys())
# Subsetting retail dataframe based on country
def choose_country(country = "all", data = retail):
if country == "all":
return data
else:
temp_df = data[data["Country"] == country]
temp_df.reset_index(drop= True, inplace= True)
return temp_df
# For United Kingdom, since it contains majority of data
uk_retail = choose_country("United Kingdom")
def cluster_plot(data_frame):
fig = px.scatter_3d(data_frame, x = 'Recency', y='Frequency', z='Monetary',
color='Clusters', opacity = 0.8, width=600, height=600, template="plotly_dark")
fig.update_layout(height=600)
st.plotly_chart(fig, use_container_width=True, height=600)
def kmeans_on_df():
# Scaling Recency, Frequency, Monetary and RFM_Score columns
scaler = StandardScaler()
# Subset
rfm_scaled = rfm_new[['Recency','Frequency','Monetary','RFM_Score']]
rfm_scaled = scaler.fit_transform(rfm_scaled)
rfm_scaled = pd.DataFrame(rfm_scaled, columns = ['Recency','Frequency','Monetary','RFM_Score'])
# Fit Kmeans at n_clusters = 4
kmeans = KMeans(n_clusters=4, init='k-means++',n_init=10,max_iter=50,verbose=0)
kmeans.fit(rfm_scaled)
# Assigning Clusters
rfm_new['Clusters'] = kmeans.labels_
return rfm_new
def plot_pcts(df, string):
# https://sakizo-blog.com/en/607/
fig_target = go.Figure(data=[go.Pie(labels=df.index,
values=df[string],
hole=.3)])
fig_target.update_layout(showlegend=False,
height=500,
margin={'l': 10, 'r': 10, 't': 0, 'b': 0})
fig_target.update_traces(textposition='inside', textinfo='label+percent')
fig_target.update_traces(marker=dict(colors=['lightcyan', 'cyan', 'royalblue', 'darkblue']))
return st.plotly_chart(fig_target, use_container_width=True)
# Function to group on Month/Date/Day of the Week/Week of the Year/Time of the Day
def group_sales_quantity(df, feature):
df = df[[f'{feature}','Quantity','Sales Revenue']].groupby([f'{feature}']).sum().sort_values(by= 'Sales Revenue', ascending = False).reset_index()
return df
# %%
# First page
if page == "Product Recommendation using Market Basket Analysis":
# Title
html_temp_title = """
<div style="background-color:#154360;padding:2px">
<h2 style="color:white;text-align:center;">Product Recommendation using Market Basket Analysis</h2>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("")
# Pick country
st.markdown('### Choose Country:')
option = st.selectbox('', country_list)
country_retail = choose_country(option)
# Display
AgGrid(country_retail, theme='blue', height = 200, width = 150)
# List of all products
product_catalog = list(country_retail['Description'].unique())
#### Need to have a drop down to choose country and then filter dataset based on that
st.markdown('### Choose Product:')
prod_option = st.selectbox('', product_catalog)
# Opening JSON file
with open('item_sets.json') as json_file:
data = json.load(json_file)
# Display
if len(data[prod_option]) == 0:
st.error("Oops! No product recommendations available yet! Please select a different item.")
else:
st.markdown("####")
st.success("##### People also bought...")
for d in data[prod_option]:
if d:
st.markdown("- " + d)
# %%
if page == "Customer Segmentation based on RFM Analysis":
# Title
html_temp_title = """
<div style="background-color:#154360;padding:2px">
<h2 style="color:white;text-align:center;">Customer Segmentation based on RFM Analysis</h2>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("")
try:
col1, col2, col3= st.columns([5, 1, 10])
with col1:
# About RFM
st.markdown('## What is RFM Analysis?')
st.markdown('It is a customer segmentation technique that uses past purchase behavior to segment customers. To perform RFM analysis, we divide customers into four equal groups according to the distribution of values for recency, frequency, and monetary value.')
st.markdown('**1. Recency (R)**: Time since last purchase')
st.markdown('**2. Frequency (F)**: Total number of purchases')
st.markdown('**3. Monetary Value (M)**: Total monetary value')
with col3:
# Pick country
st.markdown('## Choose Country:')
rfm_country = st.selectbox('', country_list)
rfm_country_df = choose_country(rfm_country)
# We need a reference day to perform the RFM Analysis
# In this case the day after the last recorded date in the dataset plus a day
rfm_country_df['InvoiceDate'] = pd.to_datetime(rfm_country_df['InvoiceDate'])
ref_date = rfm_country_df['InvoiceDate'].max() + dt.timedelta(days=1)
# Remove 'Guest Customer'
rfm_country_df = rfm_country_df[rfm_country_df['CustomerID'] != "Guest Customer"]
# Aggregating over CustomerID
rfm_new = rfm_country_df.groupby('CustomerID').agg({'InvoiceDate': lambda x: (ref_date - x.max()).days,
'InvoiceNo': lambda x: x.nunique(),
'Sales Revenue': lambda x: x.sum()})
# Calculate quantiles
rfm_new.columns = ['Recency', 'Frequency', 'Monetary']
rfm_new["R"] = pd.qcut(rfm_new['Recency'].rank(method="first"), 4, labels=[4, 3, 2, 1])
rfm_new["F"] = pd.qcut(rfm_new['Frequency'].rank(method="first"), 4, labels=[1, 2, 3, 4])
rfm_new["M"] = pd.qcut(rfm_new['Monetary'].rank(method="first"), 4, labels=[1, 2, 3, 4])
# Calculate RFM Score
rfm_new['RFM_Score'] = (rfm_new['R'].astype(int) + rfm_new['F'].astype(int) + rfm_new['M'].astype(int))
# New RFM Dataframe
rfm_new.reset_index(inplace=True)
# K-means
df = kmeans_on_df()
# Display merged dataframes
AgGrid(df, theme='blue', height = 200, width = 150)
html_temp_title = """
<div style="background-color:SteelBlue;padding:4px">
<h4 style="color:white;text-align:center;">Identified Clusters</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
cluster_plot(df)
# Pie charts
rfm_stats = df[["Clusters","RFM_Score", "Recency", "Frequency", "Monetary"]].groupby("Clusters").agg(["mean"])
rfm_stats.columns = ["RFM_Score_Mean", "Recency_Mean", "Frequency_Mean", "Monetary_Mean"]
html_temp_title = """
<div style="background-color:SteelBlue;padding:4px">
<h4 style="color:white;text-align:center;">Pie-plot Distribution of Clusters Based on RFM Analysis</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown('###')
col1, col2, col3, col4, col5 = st.columns([5, 1, 5, 1, 5])
with col1:
html_temp_title = """
<div style="background-color:lightblue;padding:4px">
<h5 style="color:white;text-align:center;">Recency</h5>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
plot_pcts(rfm_stats, 'Recency_Mean')
with col3:
html_temp_title = """
<div style="background-color:lightblue;padding:4px">
<h5 style="color:white;text-align:center;">Frequency</h5>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
plot_pcts(rfm_stats, 'Frequency_Mean')
with col5:
html_temp_title = """
<div style="background-color:lightblue;padding:4px">
<h5 style="color:white;text-align:center;">Monetary</h5>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
plot_pcts(rfm_stats, 'Monetary_Mean')
except:
st.error("Oops! Error performing operation! Please select another country.")
# %%
if page == "Dashboard":
# Title
html_temp_title = """
<div style="background-color:#154360;padding:2px">
<h2 style="color:white;text-align:center;">Dashboard</h2>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
# Pick country
st.markdown('#### Choose Country:')
option = st.selectbox('', country_list)
country_retail = choose_country(option)
# Top 10 customers without 'Guest Customer'
top_customers = country_retail[country_retail["CustomerID"] != "Guest Customer"].groupby("CustomerID")["InvoiceNo"].nunique().sort_values(ascending = False).reset_index().head(11)
html_temp_title = """
<div style="background-color:#ABBAEA;padding:4px">
<h3 style="color:white;text-align:center;">Top Customers without 'Guest Customer'</h3>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
fig = px.bar(top_customers, x ="CustomerID", y = "InvoiceNo", color= 'InvoiceNo')
fig.update_layout(showlegend=False,
height=250, width = 500,
margin={'l': 10, 'r': 10, 't': 0, 'b': 0})
fig.update(layout_coloraxis_showscale=False)
st.plotly_chart(fig, use_container_width=True)
# Top 10 performing products
col1, col2, col3= st.columns([10, 1, 10])
with col1:
html_temp_title = """
<div style="background-color:#ABBAEA;padding:4px">
<h3 style="color:white;text-align:center;">Top Products by Sold Quantity</h3>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
top_products_qty = group_sales_quantity(country_retail, 'Description').sort_values(ascending=False, by = "Quantity").reset_index(drop=True)
top_products_qty.drop('Sales Revenue', axis=1, inplace=True)
# Display merged dataframes
AgGrid(top_products_qty, theme='blue', height = 200, width = 150)
with col3:
html_temp_title = """
<div style="background-color:#ABBAEA;padding:4px">
<h3 style="color:white;text-align:center;">Top Products by Gross Sales Revenue</h3>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
# Top 10 Product Description by Sales Revenue
top_products_revenue = group_sales_quantity(country_retail, 'Description').sort_values(ascending=False, by = "Sales Revenue").reset_index(drop=True)
top_products_revenue.drop('Quantity', axis=1, inplace=True)
# Display merged dataframes
AgGrid(top_products_revenue, theme='blue', height = 200, width = 150)
html_temp_title = """
<div style="background-color:#ABBAEA;padding:4px">
<h3 style="color:white;text-align:center;">Country Level Statistics</h3>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
# Top 10 Countries and their total order counts (without U.K.)
col1, col2, col3= st.columns([10, 1, 5])
with col1:
html_temp_title = """
<div style="background-color:SteelBlue;padding:4px">
<h4 style="color:white;text-align:center;">1. Top 10 Countries and their total order counts (without U.K.)</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
# Aggregating on Countries without United Kingdom
country_data_wo_uk = retail[retail['Country']!='United Kingdom'].groupby('Country')['InvoiceNo'].nunique().sort_values(ascending = False).reset_index()
country_data_wo_uk_subset = country_data_wo_uk.head(10)
# Plotting
fig = px.bar(country_data_wo_uk_subset, x ="Country", y = "InvoiceNo", color= 'InvoiceNo')
fig.update_layout(showlegend=False,
height=400, width = 650,
margin={'l': 10, 'r': 10, 't': 0, 'b': 0})
fig.update(layout_coloraxis_showscale=False)
st.plotly_chart(fig)
with col3:
html_temp_title = """
<div style="background-color:lightblue;padding:4px">
<h4 style="color:white;text-align:center;">Observations</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
st.markdown('- The above charts show that the UK by far has more invoices with the count surpassing 16000')
st.markdown('- Germany in in second place, with approximately 30 time less invoices (414 count)')
st.markdown('- The retail store management can start posing question of why this is the case, especially when this is a Online retail store')
st.markdown('- They need a process to improve the quality and quantity of website traffic to a website')
# Total Sales Revenue for Countries (except UK)
col1, col2, col3= st.columns([10, 1, 5])
with col1:
html_temp_title = """
<div style="background-color:SteelBlue;padding:4px">
<h4 style="color:white;text-align:center;">2. Total Sales Revenue for Countries (without U.K.)</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
sales_wo_uk = retail[retail['Country'] != 'United Kingdom'].groupby('Country').sum().sort_values(by = 'Sales Revenue', ascending = False).reset_index()
# Plotting
fig = px.bar(sales_wo_uk, x ="Sales Revenue", y = "Country", color= 'Sales Revenue')
fig.update_layout(showlegend=False,
height=400, width = 650,
margin={'l': 10, 'r': 10, 't': 0, 'b': 0})
fig.update(layout_coloraxis_showscale=False)
st.plotly_chart(fig)
with col3:
html_temp_title = """
<div style="background-color:lightblue;padding:4px">
<h4 style="color:white;text-align:center;">Observations</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
st.markdown('- Sales Revenue for Netherlands and Ireland(EIRE) are quite close ($270K)')
# Total Quantity of Items Sold for Countries (without U.K.)
col1, col2, col3= st.columns([10, 1, 5])
with col1:
html_temp_title = """
<div style="background-color:SteelBlue;padding:4px">
<h4 style="color:white;text-align:center;">3. Total Quantity of Items Sold for Countries (without U.K.)</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
# Plotting
fig = px.bar(sales_wo_uk, x ="Quantity", y = "Country", color= 'Quantity')
fig.update_layout(showlegend=False,
height=400, width = 650,
margin={'l': 10, 'r': 10, 't': 0, 'b': 0})
fig.update(layout_coloraxis_showscale=False)
st.plotly_chart(fig)
with col3:
html_temp_title = """
<div style="background-color:lightblue;padding:4px">
<h4 style="color:white;text-align:center;">Observations</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
st.markdown('- Total Quantity of items sold for Netherlands and Ireland(EIRE) are at the top with values 190K and 140K')
# Monthly Stats
html_temp_title = """
<div style="background-color:#ABBAEA;padding:4px">
<h3 style="color:white;text-align:center;">Monthly Statistics</h3>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
col1, col2, col3= st.columns([10, 1, 5])
with col1:
html_temp_title = """
<div style="background-color:SteelBlue;padding:4px">
<h4 style="color:white;text-align:center;">1. Monthly Stats by Sales Revenue</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
# Get monthly stats dataframe
monthly_stats = group_sales_quantity(retail, 'Month')
# Plotting
fig = px.bar(monthly_stats, x ="Sales Revenue", y = "Month", color= 'Sales Revenue')
fig.update_layout(showlegend=False,
height=400, width = 650,
margin={'l': 10, 'r': 10, 't': 0, 'b': 0})
fig.update(layout_coloraxis_showscale=False)
st.plotly_chart(fig)
with col3:
html_temp_title = """
<div style="background-color:lightblue;padding:4px">
<h4 style="color:white;text-align:center;">Observations</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
st.markdown('- As expected, the Monthly statistics for November is the highest due to Thanksgiving Holiday/Black Friday/Cyber Monday sale')
# Percentage Pie Chart for Quantity per Month
col1, col2, col3= st.columns([10, 1, 5])
with col1:
html_temp_title = """
<div style="background-color:SteelBlue;padding:4px">
<h4 style="color:white;text-align:center;">2. Percentage Pie Chart for Quantity Sold per Month</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
# Plotting
fig_target = go.Figure(data=[go.Pie(labels=monthly_stats["Month"],
values=monthly_stats["Quantity"],
hole=.3)])
fig_target.update_layout(showlegend=False,
height=500,
margin={'l': 10, 'r': 10, 't': 0, 'b': 0})
fig_target.update_traces(textposition='inside', textinfo='label+percent')
fig_target.update_traces(marker=dict(colors=['lightcyan', 'cyan', 'royalblue', 'darkblue']))
st.plotly_chart(fig_target, use_container_width=True)
with col3:
html_temp_title = """
<div style="background-color:lightblue;padding:4px">
<h4 style="color:white;text-align:center;">Observations</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
st.markdown("- Highest sales (by revenue and quantity) has been noted during the Fall season, which are the month of September, October, November")
st.markdown('- Lowest percentage of sales (by revenue and quantity) has been noted during the Winter season (January, February, March, April) where people are unable to leave the house due to harsh weather')
# Daily Statistics
html_temp_title = """
<div style="background-color:#ABBAEA;padding:4px">
<h3 style="color:white;text-align:center;">Daily Statistics</h3>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
col1, col2, col3= st.columns([10, 1, 5])
with col1:
html_temp_title = """
<div style="background-color:SteelBlue;padding:4px">
<h4 style="color:white;text-align:center;">1. Percentage Pie Chart for Gross Sales Revenue per Day of Week</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
# Get daily stats dataframe
daily_stats = group_sales_quantity(retail, 'Day of Week')
# Plotting
fig_target = go.Figure(data=[go.Pie(labels=daily_stats["Day of Week"],
values=daily_stats["Sales Revenue"],
hole=.3)])
fig_target.update_layout(showlegend=False,
height=500,
margin={'l': 10, 'r': 10, 't': 0, 'b': 0})
fig_target.update_traces(textposition='inside', textinfo='label+percent')
fig_target.update_traces(marker=dict(colors=['lightcyan', 'cyan', 'royalblue', 'darkblue']))
st.plotly_chart(fig_target, use_container_width=True)
with col3:
html_temp_title = """
<div style="background-color:lightblue;padding:4px">
<h4 style="color:white;text-align:center;">Observations</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
st.markdown("- People buy more on Thursdays to prepare for the weekend, followed by Tuesday to prepare for the week ahead")
st.markdown('- Least sale is noted for Sunday')
col1, col2, col3= st.columns([10, 1, 5])
with col1:
html_temp_title = """
<div style="background-color:SteelBlue;padding:4px">
<h4 style="color:white;text-align:center;">2. Percentage Pie Chart for Quantity Sold per Time of Day</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
timeofday_stats = group_sales_quantity(retail, 'Time of Day')
# Plotting
fig_target = go.Figure(data=[go.Pie(labels=timeofday_stats["Time of Day"],
values=timeofday_stats["Quantity"],
hole=.3)])
fig_target.update_layout(showlegend=False,
height=500,
margin={'l': 10, 'r': 10, 't': 0, 'b': 0})
fig_target.update_traces(textposition='inside', textinfo='label+percent')
fig_target.update_traces(marker=dict(colors=['lightcyan', 'cyan', 'royalblue', 'darkblue']))
st.plotly_chart(fig_target, use_container_width=True)
with col3:
html_temp_title = """
<div style="background-color:lightblue;padding:4px">
<h4 style="color:white;text-align:center;">Observations</h4>
</div>
"""
st.markdown(html_temp_title, unsafe_allow_html=True)
st.markdown("###")
st.markdown("- People tend to buy more during the morning period than at night")
# %%
if __name__ == "__main__":
main()