|
| 1 | +"""Module implementing pilot phase synchronizers.""" |
| 2 | +import torch |
| 3 | +from ....functional.torch import convolve |
| 4 | +from ....functional.torch import unwrap_torch |
| 5 | + |
| 6 | + |
| 7 | +class PilotInserter(torch.nn.Module): |
| 8 | + """ |
| 9 | + Insert a pilot symbol at a regular interval. |
| 10 | +
|
| 11 | + Either a QPSK symbol or another pre-defined symbol. |
| 12 | + """ |
| 13 | + |
| 14 | + def __init__(self, block_length=64, pilot_symbol=None, **kwargs): |
| 15 | + """ |
| 16 | + Initialize :py:class:`PilotInserter`. |
| 17 | +
|
| 18 | + :param block_length: Blocklength of signal plus one pilot symbol |
| 19 | + :param pilot_symbol: Pilot symbol or pilot sequence for consecutive blocks |
| 20 | + """ |
| 21 | + super(PilotInserter, self).__init__(**kwargs) |
| 22 | + self.block_length = block_length |
| 23 | + if pilot_symbol is None: |
| 24 | + self.pilot_symbol = 1 / (torch.sqrt(torch.tensor(2))) * (1 + 1j) |
| 25 | + else: |
| 26 | + self.pilot_symbol = pilot_symbol |
| 27 | + |
| 28 | + def forward(self, y): |
| 29 | + """ |
| 30 | + Insert pilot symbols into transmit signal y. |
| 31 | +
|
| 32 | + :param y: Transmit symbols |
| 33 | + """ |
| 34 | + y = torch.squeeze(y) |
| 35 | + if len(y.size()) < 2: |
| 36 | + y = torch.reshape(torch.unsqueeze(y, -1), (-1, self.block_length - 1)) |
| 37 | + else: |
| 38 | + assert y.size()[1] == self.block_length - 1 |
| 39 | + |
| 40 | + if not self.pilot_symbol.size() or self.pilot_symbol.size()[0] < y.size()[0]: |
| 41 | + if not self.pilot_symbol.size(): |
| 42 | + pilot_size = 1 |
| 43 | + else: |
| 44 | + pilot_size = self.pilot_symbol.size()[0] |
| 45 | + pilots = torch.repeat_interleave( |
| 46 | + self.pilot_symbol, |
| 47 | + torch.tensor((-1 * (-y.size()[0] // pilot_size),)), |
| 48 | + )[: y.size()[0]].to(y.device) |
| 49 | + else: |
| 50 | + pilots = self.pilot_symbol.to(y.device) |
| 51 | + pilots = torch.unsqueeze(pilots, -1) |
| 52 | + signal = torch.concat((pilots, y), dim=-1).flatten() |
| 53 | + return signal |
| 54 | + |
| 55 | + |
| 56 | +class PilotPhaseCompensation(torch.nn.Module): |
| 57 | + """ |
| 58 | + Phase compensation based on inserted pilot symbols. |
| 59 | +
|
| 60 | + This block performs the phase compensation based on pilot symbols inserted by |
| 61 | + :py:class:`PilotInserter`. |
| 62 | + """ |
| 63 | + |
| 64 | + def __init__( |
| 65 | + self, block_length=64, pilot_symbol=None, window_size=10 * 64, **kwargs |
| 66 | + ): |
| 67 | + """ |
| 68 | + Initialize :py:class:`PilotPhaseCompensation`. |
| 69 | +
|
| 70 | + :param block_length: Block length of the transmit signal plus pilots |
| 71 | + :param pilot_symbol: Either a single pilot symbol or a sequence which is |
| 72 | + inserted to consecutive transmit symbol blocks |
| 73 | + :param window_size: Window size to use for moving average of the phase |
| 74 | + estimation. |
| 75 | + """ |
| 76 | + super(PilotPhaseCompensation, self).__init__(**kwargs) |
| 77 | + self.block_length = block_length |
| 78 | + self.window_size = window_size |
| 79 | + if pilot_symbol is None: |
| 80 | + self.pilot_symbol = 1 / (torch.sqrt(torch.tensor(2))) * (1 + 1j) |
| 81 | + else: |
| 82 | + self.pilot_symbol = pilot_symbol |
| 83 | + |
| 84 | + def forward(self, y): |
| 85 | + """ |
| 86 | + Apply the phase compensation to received signal `y`. |
| 87 | +
|
| 88 | + :param y: Received signal |
| 89 | + """ |
| 90 | + if len(y.size()) < 2: |
| 91 | + y = torch.reshape(torch.unsqueeze(y, 1), (-1, self.block_length)) |
| 92 | + else: |
| 93 | + assert y.size()[1] == self.block_length |
| 94 | + if not self.pilot_symbol.size() or self.pilot_symbol.size()[0] < y.size()[0]: |
| 95 | + if not self.pilot_symbol.size(): |
| 96 | + pilot_size = 1 |
| 97 | + else: |
| 98 | + pilot_size = self.pilot_symbol.size()[0] |
| 99 | + pilots = torch.repeat_interleave( |
| 100 | + self.pilot_symbol, |
| 101 | + torch.tensor( |
| 102 | + -1 * (-y.size()[0] // pilot_size), |
| 103 | + ), |
| 104 | + )[: y.size()[0]] |
| 105 | + else: |
| 106 | + pilots = self.pilot_symbol |
| 107 | + pilots = torch.unsqueeze(pilots, -1).to(y.device) |
| 108 | + |
| 109 | + received_pilots = torch.unsqueeze(y[:, 0], -1) |
| 110 | + phase_est = ( |
| 111 | + torch.angle(received_pilots * torch.conj(pilots)) |
| 112 | + .type(torch.float32) |
| 113 | + .flatten() |
| 114 | + ) |
| 115 | + phase_est = unwrap_torch(phase_est) |
| 116 | + |
| 117 | + phase_comp = torch.zeros_like(y, dtype=torch.float32) |
| 118 | + phase_comp[:, 0] = phase_est |
| 119 | + phase_comp = phase_comp.flatten() |
| 120 | + |
| 121 | + filter_kernel = torch.ones((self.window_size,), dtype=torch.complex64).to( |
| 122 | + y.device |
| 123 | + ) |
| 124 | + |
| 125 | + phase_comp_val = torch.zeros_like(phase_comp, dtype=torch.float32) |
| 126 | + phase_comp_val[:: self.block_length] = 1.0 |
| 127 | + phase_comp_norm = convolve( |
| 128 | + phase_comp_val.type(torch.float32), |
| 129 | + filter_kernel.type(torch.float32), |
| 130 | + mode="same", |
| 131 | + ) |
| 132 | + |
| 133 | + phase_est = ( |
| 134 | + convolve(phase_comp.type(torch.complex64), filter_kernel, mode="same") |
| 135 | + / phase_comp_norm |
| 136 | + ) |
| 137 | + y = y.flatten() * torch.exp(-1j * phase_est) |
| 138 | + y = torch.reshape(y, (-1, self.block_length))[:, 1:].flatten() |
| 139 | + |
| 140 | + return y |
0 commit comments