You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Something in how we are doing the classification between Unity/Python is breaking for the older "single flash" approach in Bessy Unity 1.1.8.
See code below. File "D:\Users\Eli\Documents\GitHub\bci-essentials-python\bci_essentials\bci_controller.py", line 438, in step self._classifier.fit() File "D:\Users\Eli\Documents\GitHub\bci-essentials-python\bci_essentials\classification\erp_rg_classifier.py", line 354, in fit self.clf, preds, accuracy, precision, recall = __erp_rg_kernel(X, self.y) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Users\Eli\Documents\GitHub\bci-essentials-python\bci_essentials\classification\erp_rg_classifier.py", line 311, in __erp_rg_kernel precision = precision_score(self.y, preds) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Eli\mambaforge\envs\bci-essentials-dev\Lib\site-packages\sklearn\utils\_param_validation.py", line 213, in wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Eli\mambaforge\envs\bci-essentials-dev\Lib\site-packages\sklearn\metrics\_classification.py", line 2190, in precision_score p, _, _, _ = precision_recall_fscore_support( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Eli\mambaforge\envs\bci-essentials-dev\Lib\site-packages\sklearn\utils\_param_validation.py", line 186, in wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Eli\mambaforge\envs\bci-essentials-dev\Lib\site-packages\sklearn\metrics\_classification.py", line 1775, in precision_recall_fscore_support labels = _check_set_wise_labels(y_true, y_pred, average, labels, pos_label) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Eli\mambaforge\envs\bci-essentials-dev\Lib\site-packages\sklearn\metrics\_classification.py", line 1564, in _check_set_wise_labels raise ValueError( ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted'].
The text was updated successfully, but these errors were encountered:
Something in how we are doing the classification between Unity/Python is breaking for the older "single flash" approach in Bessy Unity 1.1.8.
See code below.
File "D:\Users\Eli\Documents\GitHub\bci-essentials-python\bci_essentials\bci_controller.py", line 438, in step self._classifier.fit() File "D:\Users\Eli\Documents\GitHub\bci-essentials-python\bci_essentials\classification\erp_rg_classifier.py", line 354, in fit self.clf, preds, accuracy, precision, recall = __erp_rg_kernel(X, self.y) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Users\Eli\Documents\GitHub\bci-essentials-python\bci_essentials\classification\erp_rg_classifier.py", line 311, in __erp_rg_kernel precision = precision_score(self.y, preds) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Eli\mambaforge\envs\bci-essentials-dev\Lib\site-packages\sklearn\utils\_param_validation.py", line 213, in wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Eli\mambaforge\envs\bci-essentials-dev\Lib\site-packages\sklearn\metrics\_classification.py", line 2190, in precision_score p, _, _, _ = precision_recall_fscore_support( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Eli\mambaforge\envs\bci-essentials-dev\Lib\site-packages\sklearn\utils\_param_validation.py", line 186, in wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Eli\mambaforge\envs\bci-essentials-dev\Lib\site-packages\sklearn\metrics\_classification.py", line 1775, in precision_recall_fscore_support labels = _check_set_wise_labels(y_true, y_pred, average, labels, pos_label) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Eli\mambaforge\envs\bci-essentials-dev\Lib\site-packages\sklearn\metrics\_classification.py", line 1564, in _check_set_wise_labels raise ValueError( ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted'].
The text was updated successfully, but these errors were encountered: