-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFeatureExtractor.py
428 lines (350 loc) · 15.4 KB
/
FeatureExtractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import math
import numpy
import os
import csv
from Feature import FeatureManagement, Feature
class FeatureExtractor():
devices = []
headers = []
features = {}
avg = {}
deviation = {}
skewness = {}
kurtosis = {}
zcr = {}
correlations = {}
fft_data = {}
fft_dc = {}
fft_energy = {}
fft_entropy = {}
TOTAL_NAME = "Total"
FeatureManagement = None
def __init__(self,feature_management= None):
if feature_management is None:
self.FeatureManagement = FeatureManagement()
def AddDevice(self,obj):
self.devices.append(obj["name"])
self.headers.append(obj["tab"])
def ExtractFeaturesFromFolder(self,folder,output_file=None,class_added=None):
files = os.listdir(folder)
if output_file is not None and output_file == "auto":
last_name = folder.split("/")
if len(last_name[len(last_name)-1]) == 0:
last_name = last_name[len(last_name)-2]
else:
last_name = last_name[len(last_name)-1]
output_file = "output/"+last_name+".csv"
data_combined = []
for file in files:
full_path_file = folder + file
data = self.ExtractDataFromFile(full_path_file)
data_combined.append(self.ExtractFeatures(data).copy())
returning_headers = list(data_combined[0].keys())
if class_added is not None:
returning_headers += ["class"]
returning_data = []
returning_data.append(returning_headers)
for data in data_combined:
t = []
for header in returning_headers:
if class_added is not None and header == "class":
continue
t.append(data[header])
if class_added is not None:
t.append(class_added)
returning_data.append(t)
if output_file is not None:
with open(output_file,"w+", newline='') as filename:
writer = csv.writer(filename)
writer.writerows(returning_data)
return returning_data
def ExtractDataFromFile(self,file):
return self._get_data_from_file(file)
def ExtractFeatures(self,data):
self.features.clear()
for device_id in range(0,len(self.devices)):
device = self.devices[device_id]
obj = {}
for column_id in range(0,len(self.headers[device_id])):
column = self.headers[device_id][column_id]
obj[column] = data[column]
if self.FeatureManagement.Has(Feature.AVERAGE):
self._extract_avg(obj,device_id,device)
if self.FeatureManagement.Has(Feature.STANDARD_DEVIATION):
self._extract_deviation(obj,device_id,device)
if self.FeatureManagement.Has(Feature.SKEWNESS):
self._extract_skewness(obj,device_id,device)
if self.FeatureManagement.Has(Feature.KURTOSIS):
self._extract_kurtosis(obj,device_id,device)
if self.FeatureManagement.Has(Feature.ZERO_CROSSING_RATE):
self._extract_zcr(obj,device_id,device)
if self.FeatureManagement.Has(Feature.CORRELATION):
self._extract_correlations(obj,device_id,device)
if self.FeatureManagement.Has(Feature.DC_COMPONENT) or self.FeatureManagement.Has(Feature.ENERGY) or self.FeatureManagement.Has(Feature.ENTROPY):
self._extract_fft(obj,device_id)
if self.FeatureManagement.Has(Feature.DC_COMPONENT):
self._extract_dc(self.fft_data,device_id,device)
if self.FeatureManagement.Has(Feature.ENERGY):
self._extract_energy(self.fft_data,device_id,device)
if self.FeatureManagement.Has(Feature.ENTROPY):
self._extract_entropy(self.fft_data,device_id,device)
self._build_features()
return self.features
def _get_data_from_file(self,filename):
headers = []
data = {}
with open(filename,"r") as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
if len(headers) == 0:
headers = row
for column in row:
data[column] = []
continue
for i in range(0,len(row)):
data[headers[i]].append(float(row[i]))
return data
def _extract_avg(self,data,column_id,device):
avg = {}
columns = self.headers[column_id]
if self.FeatureManagement.Has(Feature.AVERAGE_TOTAL):
tot = 0
for column in columns:
_avg = sum(data[column]) / len(data[column])
avg[column] = _avg
if self.FeatureManagement.Has(Feature.AVERAGE_TOTAL):
tot += _avg
if self.FeatureManagement.Has(Feature.AVERAGE_TOTAL):
avg[device+"_"+self.TOTAL_NAME] = (tot/len(data))
for key in avg:
self.avg[key] = avg[key]
def _extract_deviation(self,data,column_id,device):
deviation = {}
columns = self.headers[column_id]
if self.FeatureManagement.Has(Feature.STANDARD_DEVIATION_TOTAL):
tot = 0
for column in columns:
avg = self.avg[column]
_deviation = 0
for item in data[column]:
_deviation += math.pow((item-avg),2)
_deviation = math.sqrt(_deviation / len(data[column]))
deviation[column] = _deviation
if self.FeatureManagement.Has(Feature.STANDARD_DEVIATION_TOTAL):
tot += _deviation
if self.FeatureManagement.Has(Feature.STANDARD_DEVIATION_TOTAL):
deviation[device+"_"+self.TOTAL_NAME] = (tot/len(data))
for key in deviation:
self.deviation[key] = deviation[key]
def _extract_skewness(self, data, column_id, device):
skewness = {}
columns = self.headers[column_id]
if self.FeatureManagement.Has(Feature.SKEWNESS_TOTAL):
tot = 0
for column in columns:
avg = self.avg[column]
deviation = self.deviation[column]
_skewness = 0
for item in data[column]:
_skewness += (math.pow((item - avg), 3) / math.pow(deviation,3))
_skewness = _skewness * (len(data[column])/((len(data[column])-1)*(len(data[column])-2)))
skewness[column] = _skewness
if self.FeatureManagement.Has(Feature.SKEWNESS_TOTAL):
tot += _skewness
if self.FeatureManagement.Has(Feature.SKEWNESS_TOTAL):
skewness[device + "_"+self.TOTAL_NAME] = (tot / len(data))
for key in skewness:
self.skewness[key] = skewness[key]
def _extract_kurtosis(self, data, column_id, device):
kurtosis = {}
columns = self.headers[column_id]
if self.FeatureManagement.Has(Feature.KURTOSIS_TOTAL):
tot = 0
for column in columns:
avg = self.avg[column]
deviation = self.deviation[column]
_kurtosis = 0
for item in data[column]:
_kurtosis += (math.pow((item - avg), 4) / math.pow(deviation,4))
_kurtosis = _kurtosis * (len(data[column])/((len(data[column])-1)*(len(data[column])-2)))
_kurtosis = _kurtosis - (3*math.pow(len(data[column])-1,2))/((len(data[column])-2)*(len(data[column])-3))
kurtosis[column] = _kurtosis
if self.FeatureManagement.Has(Feature.KURTOSIS_TOTAL):
tot += _kurtosis
if self.FeatureManagement.Has(Feature.KURTOSIS_TOTAL):
kurtosis[device + "_"+self.TOTAL_NAME] = (tot / len(data))
for key in kurtosis:
self.kurtosis[key] = kurtosis[key]
def _extract_zcr(self,data,column_id,device):
zcr = {}
columns = self.headers[column_id]
if self.FeatureManagement.Has(Feature.ZERO_CROSSING_RATE_TOTAL):
tot = 0
for column in columns:
_zcr = 0
previous_value = None
for value in data[column]:
if previous_value is None:
previous_value = value
continue
if value * previous_value < 0:
_zcr += 1
previous_value = value
_zcr /= len(data[column])
zcr[column] = _zcr
if self.FeatureManagement.Has(Feature.ZERO_CROSSING_RATE_TOTAL):
tot += _zcr
if self.FeatureManagement.Has(Feature.ZERO_CROSSING_RATE_TOTAL):
zcr[device+"_"+self.TOTAL_NAME] = (tot/len(data))
for key in zcr:
self.zcr[key] = zcr[key]
def _extract_correlations(self, data, column_id, device):
correlations = {}
couples = []
headers = self.headers[column_id]
if self.FeatureManagement.Has(Feature.CORRELATION_TOTAL) and self.FeatureManagement.Has(Feature.AVERAGE_TOTAL) and self.FeatureManagement.Has(Feature.STANDARD_DEVIATION_TOTAL):
_headers = headers + [self.TOTAL_NAME]
else:
_headers = headers
for i in range(0,len(_headers)):
for j in range(i+1,len(_headers)):
couples.append([_headers[i],_headers[j]])
for duo in couples:
_correlation = 0
if duo[1] == self.TOTAL_NAME:
_correlation = self._extract_correlation_total(data,duo[0],headers,device)
else:
_correlation = self._extract_correlation_single(data,duo[0],duo[1])
correlations['-'.join(duo)] = _correlation
for key in correlations:
self.correlations[key] = correlations[key]
def _extract_correlation_single(self, data, column_id1, column_id2):
length = len(data[column_id1])
mult = 0
for value_id in range(0,length):
v1 = data[column_id1][value_id]
v2 = data[column_id2][value_id]
mult += (v1 * v2)
mult /= length
cov = mult - (self.avg[column_id1]*self.avg[column_id2])
std = self.deviation[column_id1] * self.deviation[column_id2]
return cov / std
def _extract_correlation_total(self,data,column_id,headers,device):
length = len(data[column_id])
mult = 0
for value_id in range(0,length):
v1 = data[column_id][value_id]
v2 = 0
for header in headers:
v2 += data[header][value_id]
mult += (v1 * v2)
mult /= length
cov = mult - (self.avg[column_id]*self.avg[device+"_"+self.TOTAL_NAME])
std = self.deviation[column_id] * self.deviation[device+"_"+self.TOTAL_NAME]
return cov / std
def _extract_fft(self,data,column_id):
fft = {}
columns = self.headers[column_id]
for column in columns:
fft[column] = numpy.fft.fft([d for d in data[column]])
self.fft_data = fft
def _extract_dc(self, data, column_id, device):
dc = {}
columns = self.headers[column_id]
if self.FeatureManagement.Has(Feature.DC_COMPONENT_TOTAL):
tot = 0
for column in columns:
_dc = 0
for value in data[column]:
_dc += math.pow(numpy.real(value),2)
_dc /= len(data[column])
dc[column] = _dc
if self.FeatureManagement.Has(Feature.DC_COMPONENT_TOTAL):
tot += _dc
if self.FeatureManagement.Has(Feature.DC_COMPONENT_TOTAL):
dc[device+"_"+self.TOTAL_NAME] = (tot/len(data))
for key in dc:
self.fft_dc[key] = dc[key]
def _extract_energy(self, data, column_id, device):
energy = {}
columns = self.headers[column_id]
if self.FeatureManagement.Has(Feature.ENERGY_TOTAL):
tot = 0
for column in columns:
_energy = 0
for value in data[column]:
_energy += (math.pow(numpy.real(value),2) + math.pow(numpy.imag(value),2))
_energy /= len(data[column])
energy[column] = _energy
if self.FeatureManagement.Has(Feature.ENERGY_TOTAL):
tot += _energy
if self.FeatureManagement.Has(Feature.ENERGY_TOTAL):
energy[device + "_" + self.TOTAL_NAME] = (tot / len(data))
for key in energy:
self.fft_energy[key] = energy[key]
def _extract_entropy(self, data, column_id, device):
entropy = {}
columns = self.headers[column_id]
if self.FeatureManagement.Has(Feature.ENTROPY_TOTAL):
tot = 0
for column in columns:
_entropy = 0
for value in data[column]:
_entropy += self._entropy_subcomputation(value,len(data[column]),self.fft_energy[column])
_entropy *= -1
entropy[column] = _entropy
if self.FeatureManagement.Has(Feature.ENTROPY_TOTAL):
tot += _entropy
if self.FeatureManagement.Has(Feature.ENTROPY_TOTAL):
entropy[device + "_" + self.TOTAL_NAME] = (tot / len(data))
for key in entropy:
self.fft_entropy[key] = entropy[key]
def _entropy_subcomputation(self,cplx,N,Energy):
return (math.pow(numpy.real(cplx),2) + math.pow(numpy.imag(cplx),2)) / (N - Energy )
def _build_features(self):
items = []
if self.FeatureManagement.Has(Feature.AVERAGE):
items.append({"name":"Average","tab":self.avg})
if self.FeatureManagement.Has(Feature.STANDARD_DEVIATION):
items.append({"name":"Deviation","tab":self.deviation})
if self.FeatureManagement.Has(Feature.SKEWNESS):
items.append({"name":"Skewness","tab":self.skewness})
if self.FeatureManagement.Has(Feature.KURTOSIS):
items.append({"name":"Kurtosis","tab":self.kurtosis})
if self.FeatureManagement.Has(Feature.ZERO_CROSSING_RATE):
items.append({"name":"ZCR","tab":self.zcr})
if self.FeatureManagement.Has(Feature.CORRELATION):
items.append({"name":"Correlation","tab":self.correlations})
if self.FeatureManagement.Has(Feature.DC_COMPONENT):
items.append({"name":"DC_Component","tab":self.fft_dc})
if self.FeatureManagement.Has(Feature.ENERGY):
items.append({"name":"Energy","tab":self.fft_energy})
if self.FeatureManagement.Has(Feature.ENTROPY):
items.append({"name":"Entropy","tab":self.fft_entropy})
for item in items:
for attr in item["tab"]:
self.features[item["name"]+"_"+attr] = item["tab"][attr]
def MergeFiles(self, folder,output_file=None):
list_files = os.listdir(folder)
headers = []
data = []
for file in list_files:
full_path = folder + file
with open(full_path,"r") as filename:
reader = csv.reader(filename)
start = True
for row in reader:
if start:
if len(headers)==0:
headers = row
start = False
continue
data.append(row)
full_data = [headers] + data
if output_file is not None:
if output_file == "auto":
output_file = folder+"merging.csv"
with open(output_file,"w+",newline='') as filename:
writer = csv.writer(filename)
writer.writerows(full_data)
return full_data