-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
55 lines (50 loc) · 1.47 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from setuptools import setup, find_packages
__version__ = "0.1.3"
# Load README
with open("README.md", encoding="utf-8") as f:
long_description = f.read()
setup(
name='torch_pgn',
version=__version__,
description='Proximity Graph Networks: Predicting ligand affinity with Message Passing Neural Networks',
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/keiserlab/torch_pgn",
author='Keiser Lab',
author_email='[email protected]',
license="MIT",
packages=find_packages(),
package_data={'torch_pgn': ["py.typed"]},
install_requires=[
"torch>=1.7.0",
"torch_geometric>=1.6.3",
"networkx>=2.5",
"typed-argument-parser==1.6.1",
"pandas==1.1.5",
"rdkit>=2020.09.3",
"numpy>=1.19.2,<=1.21.6",
"tqdm>=4.54.1",
"tensorboard>2.0",
"scipy<1.7",
"scikit-learn>=0.23.2",
"hyperopt>=0.2.5",
"sympy>=1.10.1",
"optuna>=3.6.1",
"matplotlib>=3.0.0",
"six>=1.0.0",
"oddt==0.7"
],
python_requires=">3.6,<3.8",
classifiers=[
"Programming Language :: Python :: 3.7",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
keywords=[
"chemistry",
"machine learning",
"affinity prediction",
"message passing neural network",
"graph neural network",
],
)