-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmgu.agda
745 lines (649 loc) · 35.3 KB
/
mgu.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
module mgu where
open import nat
open import inject
open import desc
open import Data.Unit using (⊤; tt)
open import Data.Nat hiding (fold)
open import Data.Nat.Properties
open import Data.Nat.Properties.Simple
open import Data.Fin hiding (_+_; _≤_; fold)
open import Data.Sum
open import Data.Product
open import Data.Maybe
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
---------------------------------------------------------------
-- functional extensionality
postulate
ext : forall {A B : Set} {f g : A -> B} -> (∀ (a : A) -> f a ≡ g a) -> f ≡ g
---------------------------------------------------------------
-- thin x y = y (if y < x)
-- = suc y (if y >= x)
-- thin x y will never be x.
thin : {m : ℕ} → Fin (suc m) → Fin m → Fin (suc m)
thin {m} zero y = suc y
thin {suc m} (suc x) zero = zero
thin {suc m} (suc x) (suc y) = suc (thin x y)
-- thick x y = just y (if y < x)
-- = nothing (if y = x)
-- = just (y - 1) (if y > x)
thick : {m : ℕ} → (x y : Fin (suc m)) → Maybe (Fin m)
thick {m} zero zero = nothing -- x = y だった
thick {m} zero (suc y) = just y -- 濃縮する
thick {zero} (suc ()) zero
thick {suc m} (suc x) zero = just zero -- x 未満なのでそのまま
thick {zero} (suc ()) (suc y)
thick {suc m} (suc x) (suc y) with thick {m} x y
... | just x' = just (suc x')
... | nothing = nothing -- x = y だった
-- thick x x は必ず nothing になる
thickxx≡nothing : ∀ {m : ℕ} (x : Fin (suc m)) → thick x x ≡ nothing
thickxx≡nothing zero = refl
thickxx≡nothing {zero} (suc ())
thickxx≡nothing {suc m} (suc x) with thickxx≡nothing x
... | a rewrite a = refl
-- thick x y が nothing になったら x ≡ y
thickxy-x≡y : ∀ {m : ℕ} (x y : Fin (suc m)) → thick x y ≡ nothing → x ≡ y
thickxy-x≡y zero zero eq = refl
thickxy-x≡y zero (suc y) ()
thickxy-x≡y {zero} (suc ()) zero eq
thickxy-x≡y {suc m} (suc x) zero ()
thickxy-x≡y {zero} (suc ()) (suc y) eq
thickxy-x≡y {suc m} (suc x) (suc y) eq with thick x y | inspect (thick x) y
thickxy-x≡y {suc m} (suc x) (suc y) () | just x' | [ eq' ]
... | nothing | [ eq' ] = cong suc (thickxy-x≡y x y eq')
thickxynothing : {m : ℕ} → {x y : Fin (suc m)} →
thick x y ≡ nothing → thick (inject₁ x) (inject₁ y) ≡ nothing
thickxynothing {x = zero} {zero} eq = refl
thickxynothing {x = zero} {suc y} ()
thickxynothing {zero} {suc ()} eq
thickxynothing {suc m} {suc x} {zero} ()
thickxynothing {suc m} {suc x} {suc y} eq with thick x y | inspect (thick x) y
thickxynothing {suc m} {suc x} {suc y} refl | nothing | [ eq2 ] rewrite eq2
with thickxynothing {x = x} eq2
... | eq3 rewrite eq3 = refl
thickxynothing {suc m} {suc x} {suc y} () | just y' | [ _ ]
thickxyjust : {m : ℕ} → {x y : Fin (suc m)} → {y' : Fin m} →
thick x y ≡ just y' → thick (inject₁ x) (inject₁ y) ≡ just (inject₁ y')
thickxyjust {x = zero} {zero} ()
thickxyjust {x = zero} {suc y} refl = refl
thickxyjust {zero} {suc x} {y} {()} eq
thickxyjust {suc m} {suc x} {zero} refl = refl
thickxyjust {suc m} {suc x} {suc y} eq with thick x y | inspect (thick x) y
thickxyjust {suc m} {suc x} {suc y} () | nothing | _
thickxyjust {suc m} {suc x} {suc y} refl | just y' | [ eq ] rewrite eq
with thickxyjust {x = x} eq
... | eq2 rewrite eq2 = refl
private
check-M : {D : Desc} → {m : ℕ} → Fin (suc m) → Fin (suc m) → Maybe (Fix D m)
check-M x y with thick x y
... | just y' = just (M y')
... | nothing = nothing -- x が現れた(x = y だった)
check-F' : {D D' : Desc} → {m : ℕ} → Fin (suc m) →
⟦ D ⟧ (Maybe (Fix D' m)) → Maybe (⟦ D ⟧ (Fix D' m))
check-F' {base} x tt = just tt
check-F' {D1 :+: D2} x (inj₁ t) with check-F' {D1} x t
... | nothing = nothing
... | just t' = just (inj₁ t')
check-F' {D1 :+: D2} x (inj₂ t) with check-F' {D2} x t
... | nothing = nothing
... | just t' = just (inj₂ t')
check-F' {D1 :*: D2} x (t1 , t2) with check-F' {D1} x t1
... | nothing = nothing
... | just t1' with check-F' {D2} x t2
... | nothing = nothing
... | just t2' = just (t1' , t2')
check-F' {rec} x t = t
check-F : {D : Desc} → {m : ℕ} → Fin (suc m) →
⟦ D ⟧ (Maybe (Fix D m)) → Maybe (Fix D m)
check-F {D} x t with check-F' {D} x t
... | nothing = nothing
... | just t' = just (F t')
{-
D = base :+: rec なら、
[D](Maybe (Fix D m)) = Unit + (Maybe (Fix D m))
Unit + (Maybe (F ([D] (Fix D m))))
D = base :+: rec :*: rec なら、
[D](Maybe (Fix D m)) = Unit + (Maybe (Fix D m)) * (Maybe (Fix D m))
Unit + (Maybe (F ([D] (Fix D m)))) * (Maybe (F ([D] (Fix D m))))
Fix D m = F (t : [D](Fix D m)) or M y
[D](Maybe ([D] (Fix D' m))) =
Unit + (Maybe ([D] (Fix D' m))) * (Maybe ([D] (Fix D' m)))
-}
-- check x t : x 番の型変数が型 t の中に現れるかをチェックする。
-- 現れなければ、型 t を x で thick できるはずなので、それを返す。
-- 現れたら、nothing を返す。
check : {D : Desc} → {m : ℕ} → Fin (suc m) → Fix D (suc m) → Maybe (Fix D m)
check {D} {m} x t = fold (check-F x)
(check-M {D} x)
t
private
checkInv-F' : {D D' : Desc} → {m : ℕ} → (x : Fin (suc m)) → (d : ⟦ D ⟧ (Fix D' (suc m))) →
(Σ[ d' ∈ ⟦ D ⟧ (Fix D' m) ]
check-F' {D} {D'} x (fmap D (check x) d) ≡ just d') ⊎
(check-F' {D} {D'} x (fmap D (check x) d) ≡ nothing)
checkInv-F' {base} x d = inj₁ (tt , refl)
checkInv-F' {D1 :+: D2} x (inj₁ d1) with checkInv-F' {D1} x d1
... | inj₁ (d1' , eq) rewrite eq = inj₁ (inj₁ d1' , refl)
... | inj₂ eq rewrite eq = inj₂ refl
checkInv-F' {D1 :+: D2} x (inj₂ d2) with checkInv-F' {D2} x d2
... | inj₁ (d2' , eq) rewrite eq = inj₁ (inj₂ d2' , refl)
... | inj₂ eq rewrite eq = inj₂ refl
checkInv-F' {D1 :*: D2} x (d1 , d2) with checkInv-F' {D1} x d1
... | inj₂ eq1 rewrite eq1 = inj₂ refl
... | inj₁ (d1' , eq1) rewrite eq1 with checkInv-F' {D2} x d2
... | inj₂ eq2 rewrite eq2 = inj₂ refl
... | inj₁ (d2' , eq2) rewrite eq2 = inj₁ ((d1' , d2') , refl)
checkInv-F' {rec} x d with check x d | inspect (check x) d
checkInv-F' {rec} x d | nothing | [ eq ] = inj₂ refl
checkInv-F' {rec} x d | just d' | [ eq ] rewrite eq = inj₁ (d' , refl)
checkInv-F : {D : Desc} → {m : ℕ} → (x : Fin (suc m)) → (d : ⟦ D ⟧ (Fix D (suc m))) →
(r : ⟦ D ⟧' (λ (t : Fix D (suc m)) → {t' : Fix D m} →
check {D} x t ≡ just t' →
(Σ[ d2 ∈ ⟦ D ⟧ (Fix D (suc m)) ] Σ[ d' ∈ ⟦ D ⟧ (Fix D m) ]
(t ≡ F d2) × (t' ≡ F d') × (check-F {D} x (fmap D (check x) d2) ≡ just (F d'))) ⊎
(Σ[ y2 ∈ Fin (suc m) ] Σ[ y' ∈ Fin m ]
(t ≡ M y2) × (t' ≡ M y') × (thick x y2 ≡ just y'))) d) →
{t' : Fix D m} →
check {D} x (F d) ≡ just t' →
(Σ[ d2 ∈ ⟦ D ⟧ (Fix D (suc m)) ] Σ[ d' ∈ ⟦ D ⟧ (Fix D m) ]
(F {D = D} d ≡ F d2) × (t' ≡ F d') × (check-F {D} x (fmap D (check x) d2) ≡ just (F d'))) ⊎
(Σ[ y2 ∈ Fin (suc m) ] Σ[ y' ∈ Fin m ]
(F {D = D} d ≡ M y2) × (t' ≡ M y') × (thick x y2 ≡ just y'))
checkInv-F {base} x tt tt refl = inj₁ (tt , tt , refl , refl , refl)
checkInv-F {D1 :+: D2} x (inj₁ d1) r eq with check-F' {D1 :+: D2} x (inj₁ (fmap D1 (check x) d1))
| inspect (check-F' {D1 :+: D2} x) (inj₁ (fmap D1 (check x) d1))
checkInv-F {D1 :+: D2} x (inj₁ d1) r () | nothing | _
checkInv-F {D1 :+: D2} x (inj₁ d1) r refl | just d' | [ eq2 ] rewrite eq2 =
inj₁ (inj₁ d1 , d' , refl , refl , lem3 eq2)
where lem3 : check-F' {D1 :+: D2} x (inj₁ (fmap D1 (check x) d1)) ≡ just d' →
check-F {D1 :+: D2} x (fmap (D1 :+: D2) (check x) (inj₁ d1)) ≡ just (F d')
-- goal: check-F x (inj₁ (fmap D1 (check x) d1)) ≡ just (F d')
lem3 eq rewrite eq = refl
checkInv-F {D1 :+: D2} x (inj₂ d2) r eq with check-F' {D1 :+: D2} x (inj₂ (fmap D2 (check x) d2))
| inspect (check-F' {D1 :+: D2} x) (inj₂ (fmap D2 (check x) d2))
checkInv-F {D1 :+: D2} x (inj₂ d2) r () | nothing | _
checkInv-F {D1 :+: D2} x (inj₂ d2) r refl | just d' | [ eq2 ] rewrite eq2 =
inj₁ (inj₂ d2 , d' , refl , refl , lem4 eq2)
where lem4 : check-F' {D1 :+: D2} x (inj₂ (fmap D2 (check x) d2)) ≡ just d' →
check-F {D1 :+: D2} x (fmap (D1 :+: D2) (check x) (inj₂ d2)) ≡ just (F d')
lem4 eq rewrite eq = refl
checkInv-F {D1 :*: D2} x (d1 , d2) (r1 , r2) eq
with check {D1 :*: D2} x (F (d1 , d2)) | inspect (check {D1 :*: D2} x) (F (d1 , d2))
checkInv-F {D1 :*: D2} x (d1 , d2) (r1 , r2) () | nothing | _
checkInv-F {D1 :*: D2} x (d1 , d2) (r1 , r2) refl | just (F (d1' , d2')) | [ eq ] rewrite eq =
inj₁ ((d1 , d2) , (d1' , d2') , refl , refl , eq)
checkInv-F {D1 :*: D2} x (d1 , d2) (r1 , r2) refl | just (M y) | [ eq ] -- = {!!} -- rewrite eq = {!!}
with check-F' {D1 :*: D2} x (fmap (D1 :*: D2) (check x) (d1 , d2))
checkInv-F {D1 :*: D2} x (d1 , d2) (r1 , r2) refl | just (M y) | [ () ] | just x₁
checkInv-F {D1 :*: D2} x (d1 , d2) (r1 , r2) refl | just (M y) | [ () ] | nothing
checkInv-F {rec} x d r eq with check x d
checkInv-F {rec} x d r () | nothing
checkInv-F {rec} x d r refl | just t' with r refl
checkInv-F {rec} x .(F d2) r refl | just .(F d') | inj₁ (d2 , d' , refl , refl , eq3) =
inj₁ (F d2 , F d' , refl , refl , lem1 eq3)
where lem1 : check {rec} x (F d2) ≡ just (F d') →
check {rec} x (F (F d2)) ≡ just (F (F d'))
lem1 eq rewrite eq = refl
checkInv-F {rec} x .(M y2) r refl | just .(M y') | inj₂ (y2 , y' , refl , refl , eq3) =
inj₁ (M y2 , M y' , refl , refl , lem2 eq3)
where lem2 : thick x y2 ≡ just y' →
check {rec} x (F (M y2)) ≡ just (F (M y'))
lem2 eq rewrite eq = refl
checkInv-M' : {D : Desc} → {m : ℕ} → (x y : Fin (suc m)) → {t' : Fix D m} →
check {D} x (M y) ≡ just t' →
(Σ[ y' ∈ Fin m ] (t' ≡ M y') × (thick x y ≡ just y'))
checkInv-M' x y eq with thick x y
checkInv-M' x y () | nothing
checkInv-M' x y refl | just y' = (y' , refl , refl)
checkInv-M : {D : Desc} → {m : ℕ} → (x y : Fin (suc m)) → {t' : Fix D m} →
check {D} x (M y) ≡ just t' →
Σ[ y2 ∈ Fin (suc m) ] Σ[ y' ∈ Fin m ]
(M {D = D} y ≡ M y2) × (t' ≡ M y') × (thick x y2 ≡ just y')
checkInv-M x y eq with checkInv-M' x y eq
... | (y' , t'≡My' , thickxy≡justy') = (y , y' , refl , t'≡My' , thickxy≡justy')
checkInv : {D : Desc} → {m : ℕ} → (x : Fin (suc m)) → (t : Fix D (suc m)) → {t' : Fix D m} →
check {D} x t ≡ just t' →
(Σ[ d ∈ ⟦ D ⟧ (Fix D (suc m)) ] Σ[ d' ∈ ⟦ D ⟧ (Fix D m) ]
(t ≡ F d) × (t' ≡ F d') × (check-F {D} x (fmap D (check x) d) ≡ just (F d'))) ⊎
(Σ[ y ∈ Fin (suc m) ] Σ[ y' ∈ Fin m ]
(t ≡ M y) × (t' ≡ M y') × (thick x y ≡ just y'))
checkInv {D} {m} x =
ind (λ (t : Fix D (suc m)) → {t' : Fix D m} →
check {D} x t ≡ just t' →
(Σ[ d ∈ ⟦ D ⟧ (Fix D (suc m)) ] Σ[ d' ∈ ⟦ D ⟧ (Fix D m) ]
(t ≡ F d) × (t' ≡ F d') × (check-F {D} x (fmap D (check x) d) ≡ just (F d'))) ⊎
(Σ[ y ∈ Fin (suc m) ] Σ[ y' ∈ Fin m ]
(t ≡ M y) × (t' ≡ M y') × (thick x y ≡ just y')))
(λ d r eq → checkInv-F x d r eq)
(λ y eq → inj₂ (checkInv-M x y eq))
private
D0 : Desc
D0 = base :+: rec :*: rec
d0 : ⟦ D0 ⟧ (Fix D0 1)
d0 = inj₂ ((F (inj₁ tt)) , (F (inj₂ ((F (inj₁ tt)) , (F (inj₁ tt))))))
ex0 : Fix D0 1 -- base -> (base -> base)
ex0 = F d0
-- ex0 = F (inj₂ ((F (inj₁ tt)) , (F (inj₂ ((F (inj₁ tt)) , (F (inj₁ tt)))))))
d1 : ⟦ D0 ⟧ (Fix D0 zero)
d1 = inj₂ ((F (inj₁ tt)) , (F (inj₂ ((F (inj₁ tt)) , (F (inj₁ tt))))))
ex1 : Fix D0 zero
ex1 = F (inj₂ ((F (inj₁ tt)) , (F (inj₂ ((F (inj₁ tt)) , (F (inj₁ tt)))))))
check0 : check {D0} zero ex0 ≡ just ex1
check0 = refl
ex2a : Fix D0 zero
ex2a = F (inj₁ tt)
ex2b : Fix D0 1
ex2b = F (inj₁ tt)
check2 : check {D0} zero ex2b ≡ just ex2a
check2 = refl
ex3a : Fix D0 zero
ex3a = F (inj₂ (F (inj₁ tt) , F (inj₁ tt)))
ex3b : Fix D0 1
ex3b = F (inj₂ (F (inj₁ tt) , F (inj₁ tt)))
check3 : check {D0} zero ex3b ≡ just ex3a
check3 = refl
test0 : Σ[ d ∈ ⟦ D0 ⟧ (Fix D0 (suc zero)) ] Σ[ d' ∈ ⟦ D0 ⟧ (Fix D0 zero) ]
(ex0 ≡ F d) × (ex1 ≡ F d') × (check-F' {D0} zero (fmap D0 (check zero) d) ≡ just d')
test0 = (d0 , d1 , refl , refl , refl)
{-
ind P phi f (F (inj₂ ([F (inj₁ tt)] , [F (inj₂ ([F (inj₁ tt)] , [F (inj₁ tt)]))])))
= phi (inj₂ ?) (everywhere D0 P (ind P phi f) (inj₂ ?))
= phi (inj₂ ?) (everywhere ? P (ind P phi f) ((F (inj₁ tt)) , (F (inj₂ ((F (inj₁ tt)) , (F (inj₁ tt)))))))
= phi (inj₂ ?) (everywhere ? P (ind P phi f) (F (inj₁ tt)) ,
everywhere ? P (ind P phi f) (F (inj₂ ((F (inj₁ tt)) , (F (inj₁ tt)))))),
= phi (inj₂ ?) (everywhere rec P (ind P phi f) (F (inj₁ tt)) ,
everywhere rec P (ind P phi f) (F (inj₂ ((F (inj₁ tt)) , (F (inj₁ tt))))))
= phi (inj₂ ?) (ind P phi f (F (inj₁ tt)) ,
ind P phi f (F (inj₂ ((F (inj₁ tt)) , (F (inj₁ tt))))))
= phi (inj₂ ?) (phi tt (everywhere ? P (ind P phi f) tt) ,
phi ((F (inj₁ tt)) , (F (inj₁ tt))) (everywhere ? P (ind P phi f) ((F (inj₁ tt)) , (F (inj₁ tt)))))
= ...
= phi1 (inj₂ ?) (phi2 tt tt ,
phi3 ((F (inj₁ tt)) , (F (inj₁ tt)))
(phi4 tt tt , phi5 tt tt))
phi1 : check zero [F (inj₂ ([F (inj₁ tt)] , [F (inj₂ ([F (inj₁ tt)] , [F (inj₁ tt)]))]))] : Fix (base :+: base:*: base) (suc zero)
= [F (inj₂ ([F (inj₁ tt)] , [F (inj₂ ([F (inj₁ tt)] , [F (inj₁ tt)]))]))] : Fix (base :+: base :*: base) zero
phi2 : check zero [F (inj₁ tt)] : Fix base (suc zero)
= [F (inj₁ tt)] : Fix (base :+: base :*: base) zero
phi3 : check zero [F (inj₂ ([F (inj₁ tt)] , [F (inj₁ tt)]))] : Fix (base:*: base) (suc zero)
= [F (inj₂ ([F (inj₁ tt)] , [F (inj₁ tt)]))] : Fix (base :+: base :*: base) zero
phi4 : check zero [F (inj₁ tt)] : Fix base (suc zero)
= [F (inj₁ tt)] : Fix (base :+: base :*: base) zero
phi5 : check zero [F (inj₁ tt)] : Fix base (suc zero)
= [F (inj₁ tt)] : Fix (base :+: base :*: base) zero
-}
{-
D = base :+: rec :*: rec なら、
[D](Fix D' m) = Unit + (Fix D' m) * (Fix D' m)
Fix D m = F (t : [D](Fix D m)) or M y
R = Fix D (suc m) として
P : R → Set
x : [D]R
[D]' P x
ind P phi f ex
-}
{-
check x (F d) = fold (check-F x) (check-M x) (F d)
= check-F x (fmap D (fold (check-F x) (check-M x)) d)
= check-F x (fmap D (check x) d)
-}
-- t' for x : x 番の型変数を型 t' に unify するような unifier を返す。
_for_ : {D : Desc} → {m : ℕ} →
(t' : Fix D m) → (x : Fin (suc m)) → Fin (suc m) → Fix D m
_for_ t' x y with thick x y
... | just y' = M y'
... | nothing = t'
-- 代入 (σ : AList m n) 関係
-- AList D m n : m 個の型変数を持つ型を n 個の型変数を持つ型にする代入
data AList (D : Desc) : ℕ → ℕ → Set where
anil : {m : ℕ} → AList D m m -- 何もしない代入
_asnoc_/_ : {m : ℕ} {m' : ℕ} → (σ : AList D m m') → (t' : Fix D m) →
(x : Fin (suc m)) → AList D (suc m) m'
-- x を t' にした上で、さらにσを行う代入
-- liftAList1 lst : lst の中の型変数の数を 1 だけ増やす
liftAList1 : {D : Desc} → {m m' : ℕ} →
AList D m m' → AList D (suc m) (suc m')
liftAList1 anil = anil
liftAList1 (σ asnoc t / x) = liftAList1 σ asnoc liftFix 1 t / inject₁ x
-- liftAList n lst : lst の中の型変数の数を n だけ増やす
liftAList : {D : Desc} → {m m' : ℕ} →
(n : ℕ) → AList D m m' → AList D (n + m) (n + m')
liftAList zero σ = σ
liftAList (suc n) σ = liftAList1 (liftAList n σ)
liftAList≤' : {D : Desc} → {l m m' : ℕ} → (m≤′m' : m ≤′ m') →
AList D l m → AList D ((m' ∸ m) + l) m'
liftAList≤' {m = m} ≤′-refl σ rewrite n∸n≡0 m = σ
liftAList≤' (≤′-step m≤′m') σ rewrite +-∸-assoc 1 (≤′⇒≤ m≤′m') =
liftAList1 (liftAList≤' m≤′m' σ)
-- liftAList≤ m≤m' lst : lst の中の型変数の数を m から m' まで増やす
liftAList≤ : {D : Desc} → {l m m' : ℕ} → (m≤m' : m ≤ m') →
AList D l m → AList D ((m' ∸ m) + l) m'
liftAList≤ m≤m' σ = liftAList≤' (≤⇒≤′ m≤m') σ
-- ふたつの代入をくっつける
_++_ : {D : Desc} → {l m n : ℕ} →
(ρ : AList D m n) → (σ : AList D l m) → AList D l n
ρ ++ anil = ρ
ρ ++ (alist asnoc t / x) = (ρ ++ alist) asnoc t / x
-- 後ろのσを持ち上げてから、ふたつの代入をくっつける
_+⟨_⟩_ : {D : Desc} → {l m m' n : ℕ} →
(ρ : AList D m' n) → (m≤m' : m ≤ m') → (σ : AList D l m) →
AList D ((m' ∸ m) + l) n
ρ +⟨ m≤m' ⟩ σ = ρ ++ (liftAList≤ m≤m' σ)
-- 代入σを Fin m → Fix D m' の関数に変換する
mvar-sub : {D : Desc} → {m m' : ℕ} → (σ : AList D m m') → Fin m → Fix D m'
mvar-sub anil = M
mvar-sub (σ asnoc t' / x) = mvar-map (mvar-sub σ) ∘ (t' for x)
-- 代入と ++ は交換できる
mvar-sub-++-commute : {D : Desc} → {m1 m2 m3 : ℕ} → (σ1 : AList D m2 m3) → (σ2 : AList D m1 m2) →
mvar-map (mvar-sub (σ1 ++ σ2)) ≡ (mvar-map (mvar-sub σ1)) ∘ (mvar-map (mvar-sub σ2))
mvar-sub-++-commute σ1 anil = sym (ext (λ a → fuse (mvar-sub σ1) M a))
mvar-sub-++-commute σ1 (σ2 asnoc t / x) =
ext (λ a → begin
mvar-map (mvar-map (mvar-sub (σ1 ++ σ2)) ∘ (t for x)) a
≡⟨ sym (fuse (mvar-sub (σ1 ++ σ2)) (t for x) a) ⟩
mvar-map (mvar-sub (σ1 ++ σ2)) (mvar-map (t for x) a)
≡⟨ cong (λ f → f (mvar-map (t for x) a)) (mvar-sub-++-commute σ1 σ2) ⟩
mvar-map (mvar-sub σ1) (mvar-map (mvar-sub σ2) (mvar-map (t for x) a))
≡⟨ cong (mvar-map (mvar-sub σ1)) (fuse (mvar-sub σ2) (t for x) a) ⟩
mvar-map (mvar-sub σ1) (mvar-map (mvar-map (mvar-sub σ2) ∘ (t for x)) a)
≡⟨ refl ⟩
((mvar-map (mvar-sub σ1)) ∘ (mvar-map (mvar-map (mvar-sub σ2) ∘ (t for x)))) a
∎)
-- substFix σ t : t に σ を適用した型を返す
substFix : {D : Desc} → {m m' : ℕ} → AList D m m' → Fix D m → Fix D m'
substFix σ t = mvar-map (mvar-sub σ) t
-- substFix≤ σ m≤m' t : t の中の型変数の数を m から m'' に増やしてからσをかける
substFix≤ : {D : Desc} → {m m' m'' : ℕ} → AList D m'' m' →
(m≤m'' : m ≤ m'') → Fix D m → Fix D m'
substFix≤ σ m≤m'' t = mvar-map (mvar-sub σ) (liftFix≤ m≤m'' t)
-- 型変数 x と y を unify する代入を返す
flexFlex : {D : Desc} → {m : ℕ} → (x y : Fin m) → Σ[ m' ∈ ℕ ] AList D m m'
flexFlex {D} {zero} () y
flexFlex {D} {suc m} x y with thick x y
... | nothing = (suc m , anil) -- x = y だった。代入の必要なし
... | just y' = (m , anil asnoc (M y') / x) -- M y' for x を返す
-- 型変数 x と型 t を unify する代入を返す
-- x が t に現れていたら nothing を返す
flexRigid : {D : Desc} → {m : ℕ} → (x : Fin m) → (t : Fix D m) →
Maybe (Σ[ m' ∈ ℕ ] AList D m m')
flexRigid {D} {zero} () t
flexRigid {D} {suc m} x t with check x t
... | nothing = nothing -- x が t に現れていた
... | just t' = just (m , anil asnoc t' / x) -- t' for x を返す
-- 型 t1 と t2(に acc をかけたもの)を unify する代入を返す
mutual
amgu : {D : Desc} → {m : ℕ} →
(t1 t2 : Fix D m) → (acc : Σ[ m' ∈ ℕ ] AList D m m') →
Maybe (Σ[ m' ∈ ℕ ] AList D m m')
amgu {D} (F t1) (F t2) (m' , anil) = amgu' {D} t1 t2 (m' , anil)
amgu (F t1) (M x2) (m' , anil) = flexRigid x2 (F t1)
amgu (M x1) (F t2) (m' , anil) = flexRigid x1 (F t2)
amgu (M x1) (M x2) (m' , anil) = just (flexFlex x1 x2)
amgu {D} {suc m} t1 t2 (m' , σ asnoc r / z)
with amgu {D} {m} (mvar-map (r for z) t1) (mvar-map (r for z) t2) (m' , σ)
... | just (m'' , σ') = just (m'' , (σ' asnoc r / z))
... | nothing = nothing
amgu' : {D D' : Desc} → {m : ℕ} →
(t1 t2 : ⟦ D ⟧ (Fix D' m)) → (acc : Σ[ m' ∈ ℕ ] AList D' m m') →
Maybe (Σ[ m' ∈ ℕ ] AList D' m m')
amgu' {base} tt tt acc = just acc
amgu' {D1 :+: D2} (inj₁ t1) (inj₁ t2) acc = amgu' {D1} t1 t2 acc
amgu' {D1 :+: D2} (inj₁ t1) (inj₂ t2) acc = nothing
amgu' {D1 :+: D2} (inj₂ t1) (inj₁ t2) acc = nothing
amgu' {D1 :+: D2} (inj₂ t1) (inj₂ t2) acc = amgu' {D2} t1 t2 acc
amgu' {D1 :*: D2} (t11 , t12) (t21 , t22) acc with amgu' {D1} t11 t21 acc
... | just acc' = amgu' {D2} t12 t22 acc'
... | nothing = nothing
amgu' {rec} t1 t2 acc = amgu t1 t2 acc
mgu : {D : Desc} → {m : ℕ} →
(t1 t2 : Fix D m) → Maybe (Σ[ m' ∈ ℕ ] AList D m m')
mgu {D} {m} t1 t2 = amgu t1 t2 (m , anil)
private
-- test
D1 : Desc
D1 = base :+: rec
TInt : Fix D1 1
TInt = F (inj₁ tt)
TIntList : Fix D1 1
TIntList = F (inj₂ TInt)
[rec]FixD11 : ⟦ rec ⟧ (Fix D1 1)
[rec]FixD11 = F (inj₁ tt)
[D1]FixD11 : ⟦ D1 ⟧ (Fix D1 1)
[D1]FixD11 = (inj₂ (F (inj₁ tt)))
[D1]FixD11' : ⟦ D1 ⟧ (Fix D1 1)
[D1]FixD11' = inj₂ (F (inj₂ (F (inj₁ tt))))
TIntListList : Fix D1 1
TIntListList = F (inj₂ (F (inj₂ (F (inj₁ tt)))))
-- type
TypeDesc : Desc
TypeDesc = base :+: rec :*: rec
Type : (m : ℕ) → Set
Type m = Fix TypeDesc m
TVar : {m : ℕ} → (x : Fin m) → Type m
TVar = M
TNat : {m : ℕ} → Type m
TNat = F (inj₁ tt)
_⇒_ : {m : ℕ} → Type m → Type m → Type m
t1 ⇒ t2 = F (inj₂ (t1 , t2))
t1 : Type 4
t1 = TVar zero ⇒ TVar zero
-- 0 ⇒ 0
t2 : Type 4
t2 = (TVar (suc zero) ⇒ TVar (suc (suc zero))) ⇒ TVar (suc (suc (suc zero)))
-- (1 ⇒ 2) ⇒ 3
u12 : Maybe (∃ (AList TypeDesc 4))
u12 = mgu t1 t2
-- just
-- (2 ,
-- (anil asnoc F (inj₂ (M zero , M (suc zero))) / suc (suc zero))
-- asnoc F (inj₂ (M zero , M (suc zero))) / zero)
-- 0 -> 0 ⇒ 1
-- 2 -> 0 ⇒ 1
t3 : Type 4
t3 = (TVar zero ⇒ TVar (suc (suc zero))) ⇒ TVar (suc (suc (suc zero)))
u13 : Maybe (∃ (AList TypeDesc 4))
u13 = mgu t1 t3
-- nothing
-- σ2 extends σ1 :「σ2 は σ1 の拡張になっている」という命題
_extends_ : {D : Desc} → {m : ℕ} →
(σ2 : Σ[ m2 ∈ ℕ ] AList D m m2) (σ1 : Σ[ m1 ∈ ℕ ] AList D m m1) → Set
_extends_ {D} {m} (m2 , σ2) (m1 , σ1) =
∀ (s t : Fix D m) → substFix σ1 s ≡ substFix σ1 t → substFix σ2 s ≡ substFix σ2 t
-- 自分自身は自分自身の拡張になっている
σextendsσ : {D : Desc} → {m : ℕ} → (σ : Σ[ n ∈ ℕ ] AList D m n) → σ extends σ
σextendsσ σ s t eq = eq
-- 任意のσは anil の拡張になっている
σextendsNil : {D : Desc} → {m : ℕ} → (σ : Σ[ m' ∈ ℕ ] AList D m m') → σ extends (m , anil)
σextendsNil (m' , σ) s t eq rewrite fold-id s | fold-id t = cong (substFix σ) eq
-- asnoc しても拡張関係は保たれる
extends-asnoc : {D : Desc} → {m m1 m2 : ℕ} → {σ1 : AList D m m1} → {σ2 : AList D m m2} →
{r : Fix D m} → {z : Fin (suc m)} →
(m2 , σ2) extends (m1 , σ1) →
(m2 , σ2 asnoc r / z) extends (m1 , σ1 asnoc r / z)
extends-asnoc {σ1 = σ1} {σ2 = σ2} {r = r} {z = z} ex s t eq
rewrite sym (fuse (mvar-sub σ1) (r for z) s)
| sym (fuse (mvar-sub σ1) (r for z) t)
| sym (fuse (mvar-sub σ2) (r for z) s)
| sym (fuse (mvar-sub σ2) (r for z) t)
= ex (fold F (r for z) s) (fold F (r for z) t) eq
{-
(m2 , σ2) extends (m1 , σ1)
= ∀ (s t : Fix D m) → substFix σ1 s ≡ substFix σ1 t → substFix σ2 s ≡ substFix σ2 t
= ∀ (s t : Fix D m) → mvar-map (mvar-sub σ1) s ≡ mvar-map (mvar-sub σ1) t →
mvar-map (mvar-sub σ2) s ≡ mvar-map (mvar-sub σ2) t
= ∀ (s t : Fix D m) → fold F (mvar-sub σ1) s ≡ fold F (mvar-sub σ1) t →
fold F (mvar-sub σ2) s ≡ fold F (mvar-sub σ2) t
(m2 , σ2 asnoc r / z) extends (m1 , σ1 asnoc r / z)
= ∀ (s t : Fix D m) → fold F (mvar-sub (σ1 asnoc r / z)) s ≡ fold F (mvar-sub (σ1 asnoc r / z)) t →
fold F (mvar-sub (σ2 asnoc r / z)) s ≡ fold F (mvar-sub (σ2 asnoc r / z)) t
= ∀ (s t : Fix D m) → fold F (mvar-map (mvar-sub σ1) ∘ r for z) s ≡ fold F (mvar-map (mvar-sub σ1) ∘ r for z) t →
fold F (mvar-map (mvar-sub σ2) ∘ r for z) s ≡ fold F (mvar-map (mvar-sub σ2) ∘ r for z) t
= ∀ (s t : Fix D m) → fold F (mvar-sub σ1) (fold F (r for z) s) ≡
fold F (mvar-sub σ1) (fold F (r for z) t) →
fold F (mvar-sub σ2) (fold F (r for z) s) ≡
fold F (mvar-sub σ2) (fold F (r for z) t)
-}
-- inj したものが等しいなら、中身も等しい
inj₁-equal : {A B : Set} → {a1 a2 : A} → inj₁ {B = B} a1 ≡ inj₁ a2 → a1 ≡ a2
inj₁-equal refl = refl
inj₂-equal : {A B : Set} → {b1 b2 : B} → inj₂ {A = A} b1 ≡ inj₂ b2 → b1 ≡ b2
inj₂-equal refl = refl
-- extends しても eq の関係は変わらない
extends-eq : {D D' : Desc} → {m m1 m2 : ℕ} → {σ1 : AList D' m m1} → {σ2 : AList D' m m2} →
(s t : ⟦ D ⟧ (Fix D' m)) →
(m2 , σ2) extends (m1 , σ1) →
fmap D (fold F (mvar-sub σ1)) s ≡ fmap D (fold F (mvar-sub σ1)) t →
fmap D (fold F (mvar-sub σ2)) s ≡ fmap D (fold F (mvar-sub σ2)) t
extends-eq {base} s t ex eq = refl
extends-eq {D1 :+: D2} {σ1 = σ1} {σ2 = σ2} (inj₁ s) (inj₁ t) ex eq =
cong inj₁ (extends-eq {D1} {σ1 = σ1} {σ2 = σ2} s t ex (inj₁-equal eq))
extends-eq {D1 :+: D2} (inj₁ s) (inj₂ t) ex ()
extends-eq {D1 :+: D2} (inj₂ s) (inj₁ t) ex ()
extends-eq {D1 :+: D2} {σ1 = σ1} {σ2 = σ2} (inj₂ s) (inj₂ t) ex eq =
cong inj₂ (extends-eq {D2} {σ1 = σ1} {σ2 = σ2} s t ex (inj₂-equal eq))
extends-eq {D1 :*: D2} {σ1 = σ1} {σ2 = σ2} (s1 , s2) (t1 , t2) ex eq =
cong₂ _,_ (extends-eq {D1} {σ1 = σ1} {σ2 = σ2} s1 t1 ex (cong proj₁ eq))
(extends-eq {D2} {σ1 = σ1} {σ2 = σ2} s2 t2 ex (cong proj₂ eq))
extends-eq {rec} s t ex eq = ex s t eq
-- 型変数 x と y を unify する代入を返す
flexFlex2 : {D : Desc} → {m : ℕ} → (x1 x2 : Fin m) →
(Σ[ m' ∈ ℕ ] Σ[ σ ∈ AList D m m' ]
substFix σ (M x1) ≡ substFix σ (M x2))
flexFlex2 {D} {zero} () x2
flexFlex2 {D} {suc m} x1 x2 with thick x1 x2 | inspect (thick x1) x2
... | nothing | [ thickx1x2≡nothing ] =
(suc m , anil , cong M (thickxy-x≡y x1 x2 thickx1x2≡nothing)) -- x1 = x2 だった。代入の必要なし
... | just x2' | [ thickx1x2≡justx2' ] =
(m , anil asnoc M x2' / x1 , cong (mvar-map M) (eq thickx1x2≡justx2')) -- TVar x2' for x1 を返す
where eq : thick x1 x2 ≡ just x2' → mvar-map {D} (M x2' for x1) (M x1) ≡ mvar-map (M x2' for x1) (M x2)
eq thickx1x2≡justx2' rewrite thickxx≡nothing x1 | thickx1x2≡justx2' = refl
flexRigidLem-F' : {D D' : Desc} → {m : ℕ} →
(x : Fin (suc m)) → (d : ⟦ D ⟧ (Fix D' (suc m))) →
(r : ⟦ D ⟧' (λ t → {t' t'' : Fix D' m} → check x t ≡ just t' → t' ≡ fold F (mvar-map M ∘ (t'' for x)) t) d) →
{d' : ⟦ D ⟧ (Fix D' m)} →
{t'' : Fix D' m} →
check-F' {D} x (fmap D (check x) d) ≡ just d' →
d' ≡ fmap D (fold F (mvar-sub (anil asnoc t'' / x))) d
flexRigidLem-F' {base} x tt tt {tt} refl = refl
flexRigidLem-F' {D1 :+: D2} x (inj₁ d) r eq
with check-F' {D1} x (fmap D1 (check x) d) | inspect (check-F' {D1} x) (fmap D1 (check x) d)
flexRigidLem-F' {D1 :+: D2} x (inj₁ d) r () | nothing | _
flexRigidLem-F' {D1 :+: D2} x (inj₁ d) r refl | just d' | [ eq' ] = cong inj₁ (flexRigidLem-F' {D1} x d r eq')
flexRigidLem-F' {D1 :+: D2} x (inj₂ d) r eq
with check-F' {D2} x (fmap D2 (check x) d) | inspect (check-F' {D2} x) (fmap D2 (check x) d)
flexRigidLem-F' {D1 :+: D2} x (inj₂ d) r () | nothing | _
flexRigidLem-F' {D1 :+: D2} x (inj₂ d) r refl | just d' | [ eq' ] = cong inj₂ (flexRigidLem-F' {D2} x d r eq')
flexRigidLem-F' {D1 :*: D2} x (d1 , d2) r eq
with check-F' {D1} x (fmap D1 (check x) d1) | inspect (check-F' {D1} x) (fmap D1 (check x) d1)
flexRigidLem-F' {D1 :*: D2} x (d1 , d2) r () | nothing | _
flexRigidLem-F' {D1 :*: D2} x (d1 , d2) r eq | just d1' | [ eq1 ]
with check-F' {D2} x (fmap D2 (check x) d2) | inspect (check-F' {D2} x) (fmap D2 (check x) d2)
flexRigidLem-F' {D1 :*: D2} x (d1 , d2) r () | just d1' | [ eq1 ] | nothing | _
flexRigidLem-F' {D1 :*: D2} x (d1 , d2) (r1 , r2) {.d1' , .d2'} refl | just d1' | [ eq1 ] | just d2' | [ eq2 ]
= cong₂ _,_ (flexRigidLem-F' {D1} x d1 r1 eq1) (flexRigidLem-F' {D2} x d2 r2 eq2)
flexRigidLem-F' {rec} x d r eq with check x d
flexRigidLem-F' {rec} x d r () | nothing
flexRigidLem-F' {rec} x d r refl | just d' = r refl
flexRigidLem-F : {D : Desc} → {m : ℕ} →
(x : Fin (suc m)) → (d : ⟦ D ⟧ (Fix D (suc m))) →
(r : ⟦ D ⟧' (λ t → {t' t'' : Fix D m} → check x t ≡ just t' → t' ≡ fold F (mvar-map M ∘ (t'' for x)) t) d) →
{t' t'' : Fix D m} →
check x (F d) ≡ just t' →
t' ≡ F (fmap D (fold F (mvar-sub (anil asnoc t'' / x))) d)
flexRigidLem-F {D} x d r eq with checkInv x (F d) eq
... | inj₂ (y2 , y' , () , eq2 , eq3)
... | inj₁ (.d , d' , refl , refl , eq3)
with check-F' {D} x (fmap D (check x) d) | inspect (check-F' {D} x) (fmap D (check x) d)
flexRigidLem-F {D} x d r eq | inj₁ (.d , d' , refl , refl , refl) | just .d' | [ eq2 ] = cong F (flexRigidLem-F' {D} x d r eq2)
flexRigidLem-F x d r eq | inj₁ (.d , d' , refl , refl , ()) | nothing | _
flexRigidLem-M : {D : Desc} → {m : ℕ} → (x y : Fin (suc m)) →
{t' t'' : Fix D m} → check x (M y) ≡ just t' →
t' ≡ (mvar-sub (anil asnoc t'' / x)) y
flexRigidLem-M x y checkxMx≡justt' with thick x y
flexRigidLem-M x y () | nothing
flexRigidLem-M x y refl | just y' = refl
flexRigidLem' : {D : Desc} → {m : ℕ} →
(x : Fin (suc m)) → (t : Fix D (suc m)) → {t' t'' : Fix D m} →
check x t ≡ just t' → -- x が t に現れないなら
t' ≡ fold F (mvar-sub (anil asnoc t'' / x)) t
-- ≡ mvar-map (mvar-sub (anil asnoc t'' / x)) t
flexRigidLem' {D} {m} x =
ind (λ t → {t' t'' : Fix D m} → check x t ≡ just t' → t' ≡ fold F (mvar-sub (anil asnoc t'' / x)) t)
(λ d r → flexRigidLem-F x d r)
(λ y → flexRigidLem-M x y)
flexRigidLem : {D : Desc} → {m : ℕ} →
(x : Fin (suc m)) → (t : Fix D (suc m)) → {t' : Fix D m} →
check x t ≡ just t' →
mvar-sub (anil asnoc t' / x) x ≡ fold F (mvar-sub (anil asnoc t' / x)) t
flexRigidLem x t {t'} checkxt≡justt' rewrite checkxt≡justt' | thickxx≡nothing x | fold-id t' =
flexRigidLem' x t checkxt≡justt'
-- 型変数 x と型 t を unify する代入を返す
-- x が t に現れていたら nothing を返す
flexRigid2 : {D : Desc} → {m : ℕ} → (x : Fin m) → (t : Fix D m) →
Maybe (Σ[ m' ∈ ℕ ] Σ[ σ ∈ AList D m m' ] substFix σ (M x) ≡ substFix σ t)
flexRigid2 {D} {zero} () t
flexRigid2 {D} {suc m} x t with check x t | inspect (check x) t
... | nothing | [ checkxt≡nothing ] = nothing -- x が t に現れていた
... | just t' | [ checkxt≡justt' ] rewrite checkxt≡justt' =
just (m , anil asnoc t' / x , flexRigidLem x t checkxt≡justt') -- t' for x を返す
-- 型 s と t(に acc をかけたもの)を unify する代入を返す
mutual
amgu2 : {D : Desc} → {m : ℕ} → (t1 t2 : Fix D m) →
(acc : Σ[ m' ∈ ℕ ] AList D m m') →
Maybe (Σ[ m' ∈ ℕ ] Σ[ σ ∈ AList D m m' ]
(m' , σ) extends acc ×
substFix σ t1 ≡ substFix σ t2)
amgu2 {D} (F t1) (F t2) (m , anil) with amgu2' {D} t1 t2 (m , anil)
... | nothing = nothing
... | just (m' , σ' , ex , eq) = just (m' , σ' , ex , cong F eq)
amgu2 {D} (F t1) (M x2) (m , anil) with flexRigid2 {D} x2 (F t1)
... | nothing = nothing
... | just (m' , σ' , eq) = just (m' , σ' , σextendsNil (m' , σ') , sym eq)
amgu2 {D} (M x1) (F t2) (m , anil) with flexRigid2 {D} x1 (F t2)
... | nothing = nothing
... | just (m' , σ' , eq) = just (m' , σ' , σextendsNil (m' , σ') , eq)
amgu2 {D} (M x1) (M x2) (m , anil) with flexFlex2 {D} x1 x2
... | (m' , σ' , eq) = just (m' , σ' , σextendsNil (m' , σ') , eq)
amgu2 {D} {suc m} t1 t2 (m' , σ asnoc r / z)
with amgu2 {D} {m} (mvar-map (r for z) t1) (mvar-map (r for z) t2) (m' , σ)
... | just (m'' , σ' , ex , eq)
rewrite fuse (mvar-sub σ') (r for z) t1 | fuse (mvar-sub σ') (r for z) t2
= just (m'' , σ' asnoc r / z , ex' , eq)
where ex' : (s t : Fix D (suc m)) →
fold F (mvar-sub (σ asnoc r / z)) s ≡ fold F (mvar-sub (σ asnoc r / z)) t →
fold F (mvar-sub (σ' asnoc r / z)) s ≡ fold F (mvar-sub (σ' asnoc r / z)) t
ex' = extends-asnoc {D} {σ1 = σ} {σ2 = σ'} {r = r} {z = z} ex
... | nothing = nothing
amgu2' : {D D' : Desc} → {m : ℕ} → (t1 t2 : ⟦ D ⟧ (Fix D' m)) →
(acc : Σ[ m' ∈ ℕ ] AList D' m m') →
Maybe (Σ[ m' ∈ ℕ ] Σ[ σ ∈ AList D' m m' ]
(m' , σ) extends acc ×
fmap D (fold F (mvar-sub σ)) t1 ≡ fmap D (fold F (mvar-sub σ)) t2)
-- substFix σ (F t1) ≡ substFix σ (F t2))
amgu2' {base} tt tt (m' , σ) = just (m' , σ , σextendsσ (m' , σ) , refl)
amgu2' {D1 :+: D2} (inj₁ t1) (inj₁ t2) acc with amgu2' {D1} t1 t2 acc
... | nothing = nothing
... | just (m' , σ , ex , eq) = just (m' , σ , ex , cong inj₁ eq)
amgu2' {D1 :+: D2} (inj₁ t1) (inj₂ t2) acc = nothing
amgu2' {D1 :+: D2} (inj₂ t1) (inj₁ t2) acc = nothing
amgu2' {D1 :+: D2} (inj₂ t1) (inj₂ t2) acc with amgu2' {D2} t1 t2 acc
... | nothing = nothing
... | just (m' , σ , ex , eq) = just (m' , σ , ex , cong inj₂ eq)
amgu2' {D1 :*: D2} (t11 , t12) (t21 , t22) (m' , σ)
with amgu2' {D1} t11 t21 (m' , σ)
... | nothing = nothing
... | just (m1 , σ1 , ex1 , eq1)
with amgu2' {D2} t12 t22 (m1 , σ1)
... | nothing = nothing
... | just (m2 , σ2 , ex2 , eq2) =
just (m2 , σ2 , (λ s t x → ex2 s t (ex1 s t x)) ,
cong₂ _,_ (extends-eq {D1} {σ1 = σ1} {σ2 = σ2} t11 t21 ex2 eq1) eq2)
amgu2' {rec} t1 t2 acc = amgu2 t1 t2 acc
-- 型 t1 と t2 を unify する代入を、確かに unify できることの証明とともに返す
mgu2 : {D : Desc} → {m : ℕ} → (t1 t2 : Fix D m) →
Maybe (Σ[ m' ∈ ℕ ] Σ[ σ ∈ AList D m m' ] substFix σ t1 ≡ substFix σ t2)
mgu2 {D} {m} t1 t2 with amgu2 {D} {m} t1 t2 (m , anil)
... | just (n , σ , _ , eq) = just (n , σ , eq)
... | nothing = nothing