-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDataset_Setup.py
357 lines (303 loc) · 12.8 KB
/
Dataset_Setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import numpy as np
from gammapy.datasets import MapDataset
from gammapy.modeling.models import (
FoVBackgroundModel,
PiecewiseNormSpectralModel,
Models,
PowerLawNormSpectralModel,
MultiVariantePrior,
GaussianPrior,
CompoundNormSpectralModel,
PowerLawNormOneHundredSpectralModel
)
from gammapy.modeling.models.IRF import (
EffAreaIRFModel,
ERecoIRFModel,
IRFModels
)
from gammapy.modeling import Parameters, Parameter
from scipy.stats import norm
from scipy.linalg import inv
import operator
class GaussianCovariance_matrix:
def __init__(
self,
magnitude,
corrlength,
size
):
self.magnitude = magnitude
self.corrlength = corrlength
self.size = size
def sys_percentage(self):
return [self.magnitude for s in range(self.size)]
def cov(self):
zero = 1e-12
cov = np.identity(self.size)
sys_percentage = self.sys_percentage()
# note: values set arbitrarily
for i in range(self.size):
if sys_percentage[i] > 0:
gau = norm.pdf(range(self.size) , loc = i , scale = self.corrlength )
cov[i,:] = gau / np.max(gau) * sys_percentage[i] / 100
cov[i,:] += [zero] * (self.size)
#carefull here it is hardcoded that the first 4 energybins are frozen
idx = 5
cov[:idx, :idx] = np.eye(idx)
cov[idx:, :idx] = 0
cov[:idx, idx:] = 0
return cov
def inv_cov(self):
return inv(self.cov())
def draw(self, seed):
mean = np.zeros(self.size)
# Generate the correlated values
np.random.seed(seed)
values = np.random.multivariate_normal(mean, self.cov(), size=1, )[0]
# Scale the values to be between -0.1 and 0.1
values = values / np.max(np.abs(values)) * self.magnitude / 100
return values
class Setup:
def __init__(
self,
dataset_input=None,
rnd=False,
e_reco_creation=10,
):
self.dataset_input = dataset_input
# set the sys parameters here and use npred as counts
self.dataset_helper = self.set_up_dataset(name = "helper")
self.dataset_helper.e_reco_n = e_reco_creation
self.rnd = rnd
self.e_reco_creation = e_reco_creation
self._irf_sys= False
self._bkg_sys = False
self._bkg_sys_V = False
self._bkg_pl_sys_V = False
def set_up_irf_sys(self, bias, resolution, norm, tilt): # onhunderd is the new eff arae model with e0 = 100 TeV and (1+ alpha)
"""
Parameters:
bias, resolution, norm, tilt
sets irf_sys to True
"""
self.bias = bias
self.resolution = resolution
self.norm= norm
self.tilt =tilt
self._irf_sys = True
def set_up_bkg_sys(self, magnitude, corrlength, seed):
"""
Parameters:
magnitude [%], corrlength, seed
sets _bkg_sys to True
"""
self.magnitude = magnitude
self.corrlength = corrlength
self.seed= seed
self._bkg_sys = True
def set_up_bkg_sys_V(self, index1, index2, breake, magnitude):
print("setup bkg V")
self.index1 = index1
self.index2 = index2
self.breake = breake
self.magnitude = magnitude
self._bkg_sys_V = True
def set_up_bkg_pl_sys_V(self, index1, index2, breake, magnitude):
self.index1 = index1
self.index2 = index2
self.breake = breake
self.magnitude = magnitude
self._bkg_pl_sys_V = True
def run(self):
"""
Returns dataset and dataset_N
both set up with the according models and filled with systematic
"""
# set up datasets
dataset, dataset_N = self.set_up_dataset(name = "dataset"), self.set_up_dataset(name = "dataset_N")
# adding systematics if set before and setting irf/piecewise model to the dataset_N
if self._irf_sys:
self.add_irf_systematic(self.bias, self.resolution, self.norm, self.tilt)
self.set_irf_model(dataset_N)
if self._bkg_sys:
# sets the counts
self.add_bkg_systematic(self.magnitude, self.corrlength, self.seed)
self.set_piecewise_bkg_model(dataset_N)
elif self._bkg_sys_V:
self.add_bkg_systematic_V( self.index1, self.index2, self.breake, self.magnitude)
self.set_piecewise_bkg_model(dataset_N)
elif self._bkg_pl_sys_V:
self.add_bkg_systematic_V( self.index1, self.index2, self.breake, self.magnitude)
self.set_piecewise_pl_bkg_model(dataset_N)
else:
self.set_simple_bkg_model(dataset_N)
self.set_simple_bkg_model(dataset)
dataset.e_reco_n = self.e_reco_creation
self.add_counts(dataset)
if self.rnd:
dataset_N.counts = dataset.counts
else:
self.add_counts(dataset_N)
return dataset, dataset_N
def set_up_dataset(self, name=None):
"""
Returns dataset which is a copy of the input and the source model is set as model.
"""
dataset = self.dataset_input.copy(name = name)
models = Models(self.dataset_input.models.copy())
dataset.models= models
return dataset
def set_simple_bkg_model(self, dataset):
"""
sets the FOVbkgmodel to the rest of the models for the dataset
"""
bkg_model = FoVBackgroundModel(dataset_name=dataset.name)
bkg_model.parameters["tilt"].frozen = False
models = Models(dataset.models.copy())
models.append(bkg_model)
dataset.models = models
def set_piecewise_bkg_model(self, dataset):
"""
sets the FOVbkgmodel with the piece wise model as the spectral model to the rest of the models for the dataset
"""
energy = dataset.geoms['geom'].axes[0].center
l = len(energy)
norms = Parameters([Parameter ("norm"+str(i), value = 0, frozen = False) for i in range(l)])
piece = PiecewiseNormSpectralModel(energy = energy,
norms = norms,
interp="lin")
piece.parameters['_norm'].value = 1
bkg_model = FoVBackgroundModel(spectral_model = piece,
dataset_name=dataset.name)
models = Models(dataset.models.copy())
models.append(bkg_model)
dataset.models = models
def set_piecewise_pl_bkg_model(self, dataset):
"""
sets the FOVbkgmodel with the piece wise model as the spectral model to the rest of the models for the dataset
"""
energy = dataset.geoms['geom'].axes[0].center
l = len(energy)
norms = Parameters([Parameter ("norm"+str(i), value = 0, frozen = False) for i in range(l)])
piece = PiecewiseNormSpectralModel(energy = energy,
norms = norms,
interp="lin")
compoundnorm = CompoundNormSpectralModel(
model1=PowerLawNormSpectralModel(),
model2=piece,
operator=operator.add,
)
bkg_model = FoVBackgroundModel(spectral_model = compoundnorm,
dataset_name=dataset.name)
models = Models(dataset.models.copy())
models.append(bkg_model)
dataset.models = models
def set_irf_model(self, dataset
):
"""
sets the IRF model to the rest of the models
"""
# +1 in evaluation of PowerLawNormOneHundredSpectralModel
# norm = 0 per default
# E_0 = 100 TeV per default
eff_area_model = EffAreaIRFModel(spectral_model = PowerLawNormOneHundredSpectralModel())
# irf model
IRFmodels = IRFModels(
eff_area_model=eff_area_model,
e_reco_model=ERecoIRFModel(),
datasets_names=dataset.name
)
models = Models(dataset.models.copy())
models.append(IRFmodels)
dataset.models = models
def unset_model(self, dataset, modeltype):
"""
unset the modeltype from all models attached to the dataset
"""
models_set = Models(dataset.models.copy())
models = Models()
for m in models_set:
if not isinstance(m, modeltype):
models.append(m)
dataset.models = models
def add_irf_systematic(self, bias, resolution, norm, tilt):
"""
sets IRF model , sets the model parameters as the input, sets the exposure and the edisp according to input
removes the IRF model again
"""
self.set_irf_model(self.dataset_helper)
self.dataset_helper.irf_model.parameters['bias'].value = bias
self.dataset_helper.irf_model.parameters['resolution'].value = resolution
self.dataset_helper.irf_model.parameters['norm'].value = norm
self.dataset_helper.irf_model.parameters['tilt'].value = tilt
def emask(self):
return self.dataset_helper.mask.data.sum(axis=2).sum(axis=1)>0
def add_bkg_systematic(self, magnitude, corrlength, seed ):
"""
sets piece wiese model, sets the model parameters as a draw from the cov. matrix
computes the npred and sets as counts
removes the piece wise model
"""
Cov = GaussianCovariance_matrix(size = len(self.emask()),
magnitude = magnitude,
corrlength = corrlength)
cov = Cov.cov()
values = Cov.draw(seed)
self.set_piecewise_bkg_model(self.dataset_helper)
for n , v in zip(self.dataset_helper.background_model.parameters.free_parameters[self.emask()],
values[self.emask()]):
n.value = v
def add_bkg_systematic_V(self, index1, index2, breake, magnitude):
print("add_bkg_systematic_V")
self.set_piecewise_bkg_model(self.dataset_helper)
N = len(self.dataset_helper.background_model.parameters.free_parameters[self.emask()])
x_values = np.linspace(0, N-1,N)
values = [np.abs (x - breake)* index1 if x < breake else np.abs (x - breake)* index2 for x in x_values ]
values /= np.max(values)
values *= magnitude * 1e-2
for n , v in zip(self.dataset_helper.background_model.parameters.free_parameters[self.emask()],
values):
n.value = v
def add_counts(self, dataset):
"""
setting counts from the npred() with or without P. stat
"""
npred = self.dataset_helper.npred()
if self.rnd:
if isinstance(self.rnd, int):
print("set seed to:", self.rnd)
np.random.seed(self.rnd)
else:
print("random seed")
np.random.seed()
counts_data = np.random.poisson(npred.data)
else:
counts_data = npred.data
dataset.counts.data = counts_data
self.dataset_helper.counts.data = counts_data
def set_bkg_prior(self, dataset_asimov_N, magnitude, corrlength):
"""
sets up multidim. prior for the piece wise bkg model
"""
if isinstance(dataset_asimov_N.background_model.spectral_model, CompoundNormSpectralModel):
modelparameters = dataset_asimov_N.background_model.spectral_model.model2.parameters
else:
modelparameters = dataset_asimov_N.background_model.parameters
modelparameters = Parameters([m for m in modelparameters if m.name != "_norm" and m.name != "tilt" and m.name != "norm"])
Cov = GaussianCovariance_matrix(size = len(self.emask()),
magnitude = magnitude,
corrlength = corrlength)
inv_cov = Cov.inv_cov()
multi_prior = MultiVariantePrior(modelparameters =modelparameters,
covariance_matrix = inv_cov,
name = "bkgsys"
)
def set_irf_prior(self, dataset_asimov_N, bias, resolution, norm, tilt):
"""
sets up Gaussian Priors for the IRF model parameters
"""
simgas = {"bias":bias, "resolution":resolution, "norm":norm, "tilt":tilt}
modelparameters = dataset_asimov_N.irf_model.parameters.free_parameters
modelparameters = Parameters([m for m in modelparameters if m.name != "reference"])
for m in modelparameters:
GaussianPrior(modelparameters = m, mu = 0., sigma = simgas[m.name])