You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
With time series data, the challenges I found model face is to understand that change in label (binary) becomes important point. For healthcare, use-case such as diagnosis of disease and data with timeline, the detection / label change from 0->1 is not irreversible (typically no records of vitals of patient after a patient is tested positive.)
One question I have is, is there a way to make a LLM understand time series / collection of records and then able to sample a time series collection of records ? I have tried to condition it with some fixed demographic values such as an identifier value, age, multiple Timestamps, however I am not convinded that I am getting a synthetic collection for those given fixed variables at different timestamps (sampling via great_sample 's starting_prompt )
Any ideas?
The text was updated successfully, but these errors were encountered:
With time series data, the challenges I found model face is to understand that change in label (binary) becomes important point. For healthcare, use-case such as diagnosis of disease and data with timeline, the detection / label change from 0->1 is not irreversible (typically no records of vitals of patient after a patient is tested positive.)
One question I have is, is there a way to make a LLM understand time series / collection of records and then able to sample a time series collection of records ? I have tried to condition it with some fixed demographic values such as an identifier value, age, multiple Timestamps, however I am not convinded that I am getting a synthetic collection for those given fixed variables at different timestamps (sampling via
great_sample
'sstarting_prompt
)Any ideas?
The text was updated successfully, but these errors were encountered: