Skip to content

Commit 012d5a2

Browse files
committed
initial TF2 changes
1 parent 217b907 commit 012d5a2

8 files changed

+1200
-149
lines changed

1-fashion-mnist-with-keras.ipynb

Lines changed: 142 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -9,12 +9,14 @@
99
"source": [
1010
"# Fashion-MNIST with tf.keras\n",
1111
"\n",
12-
"Welcome! In this lab, you'll learn how to train an image classifier train on the [Fashion-MNIST dataset](https://github.com/zalandoresearch/fashion-mnist). You'll go through all the steps, including loading the data, building and training a model, calculating the accuracy, and making predictions. Our focus here is on the code."
12+
"Welcome! In this lab, you'll learn how to train an image classifier train on the [Fashion-MNIST dataset](https://github.com/zalandoresearch/fashion-mnist) using TensorFlow 2. You'll go through all the steps, including loading the data, building and training a model, calculating the accuracy, and making predictions. Our focus here is on the code.\n",
13+
"\n",
14+
"The biggest change to TensorFlow is that it runs with eager execution by default."
1315
]
1416
},
1517
{
1618
"cell_type": "code",
17-
"execution_count": null,
19+
"execution_count": 1,
1820
"metadata": {
1921
"colab": {
2022
"autoexec": {
@@ -32,6 +34,26 @@
3234
"import numpy as np"
3335
]
3436
},
37+
{
38+
"cell_type": "code",
39+
"execution_count": 2,
40+
"metadata": {},
41+
"outputs": [
42+
{
43+
"data": {
44+
"text/plain": [
45+
"'2.0.0-preview'"
46+
]
47+
},
48+
"execution_count": 2,
49+
"metadata": {},
50+
"output_type": "execute_result"
51+
}
52+
],
53+
"source": [
54+
"tf.__version__"
55+
]
56+
},
3557
{
3658
"cell_type": "markdown",
3759
"metadata": {
@@ -46,7 +68,7 @@
4668
},
4769
{
4870
"cell_type": "code",
49-
"execution_count": null,
71+
"execution_count": 3,
5072
"metadata": {
5173
"colab": {
5274
"autoexec": {
@@ -75,7 +97,7 @@
7597
},
7698
{
7799
"cell_type": "code",
78-
"execution_count": null,
100+
"execution_count": 4,
79101
"metadata": {
80102
"colab": {
81103
"autoexec": {
@@ -86,7 +108,37 @@
86108
"colab_type": "code",
87109
"id": "AwxNOsCMNNGd"
88110
},
89-
"outputs": [],
111+
"outputs": [
112+
{
113+
"name": "stdout",
114+
"output_type": "stream",
115+
"text": [
116+
"Label: 6\n"
117+
]
118+
},
119+
{
120+
"data": {
121+
"text/plain": [
122+
"<matplotlib.image.AxesImage at 0x7fab2545ad68>"
123+
]
124+
},
125+
"execution_count": 4,
126+
"metadata": {},
127+
"output_type": "execute_result"
128+
},
129+
{
130+
"data": {
131+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAE+RJREFUeJzt3WtslmWaB/D/ZaFyRqBQwCIgAnLGTSErwoq6CAODeEjwENduYgY1Y9zBSVyDietHstmZCR82E3BVYHVlNswQUUBBnOh4CHIuVHApUJTSUkCQs0B77Yc+TDra57pq38Pz1Pv/Swjt++/d3r724j1cz33foqogovBck/QEiCgZLH6iQLH4iQLF4icKFIufKFAsfqJAsfiJAsXiJwoUi58oUO3y+cNEhJcT5kDnzp1js8LCQnNsQUGBmV++fNnM27dv3+r80qVL5tgTJ06YOTVPVaUlX5dR8YvIDACLABQA+C9VXZjJ90uSiH1/WXlDQ0O2p/OjjBs3Lja74YYbzLHdunUz89raWjPv06ePmZeUlMRmBw4cMMcuX77czJN0zTX2k+akfydaotVP+0WkAMB/AvgZgJEAHhaRkdmaGBHlViav+ScCqFTVA6p6CcAKAHOyMy0iyrVMiv96AF83+fxwdNvfEJF5IrJFRLZk8LOIKMty/oafqi4BsATgG35EaZLJI381gAFNPi+JbiOiNiCT4t8MYKiIDBaRQgAPAVidnWkRUa61+mm/ql4RkacBvIfGVt+rqlqRtZllmdfK81g7HuW67dOxY0czX7x4cWy2d+9ec2zfvn3N3Ou1jx071sytdt6kSZPMsfv37zfzTz75xMwz+X/+U2jleTJ6za+qawGszdJciCiPeHkvUaBY/ESBYvETBYrFTxQoFj9RoFj8RIGSfJ7Yw8t7W+fdd9818/Pnz8dmXbt2NcfW1dWZeY8ePcy8osK+tMPqh0+fPt0cu3PnTjN/8cUXzfzQoUNmngnvGoIkT8Jq6Xp+PvITBYrFTxQoFj9RoFj8RIFi8RMFisVPFCi2+rJg9uzZZn7rrbeaubX7LuC3206dOhWbjRkzxhy7e/duM/dagdXV9v4tc+fOjc0qKyvNsf379zdzb27Hjx+Pzd555x1z7Ouvv27macZWHxGZWPxEgWLxEwWKxU8UKBY/UaBY/ESBYvETBYp9/hZ68sknY7OysjJzrHcUdU1NTUb56dOnY7OpU6eaY7dt22bm3jUIXp//7NmzsVmmS26LiorMvLS0NDbzjh73rn+YP3++mSeJfX4iMrH4iQLF4icKFIufKFAsfqJAsfiJAsXiJwpURqf0ikgVgDMA6gFcUdX4xmrKeVsx33bbbbGZ14f/8ssvzfzw4cNm3qtXLzM/d+5cbFZbW2uOvXLlipmvWLHCzJ999lkzX7duXWxmbTkO+EeTW/sYAMCRI0dis82bN5tjhw0bZubTpk0z8w0bNph5GmRU/JE7VDV+1wQiSiU+7ScKVKbFrwDWi8hWEZmXjQkRUX5k+rR/sqpWi0gfABtEZK+qftT0C6J/FPgPA1HKZPTIr6rV0d91AFYBmNjM1yxR1dK2/GYg0U9Rq4tfRDqLSNerHwO4G4C9FIqIUiOTp/3FAFZFLbJ2AP5HVe3jZIkoNVpd/Kp6AIC92LsN8fbWnzJlSmz29ddfm2P3799v5t7+9F4//Jpr4p/A9ezZ0xx74cKFjPI33njDzAcOHBibFRQUmGMHDRpk5t4R3taZBVVVVebYSZMmmbm3j0Fb6POz1UcUKBY/UaBY/ESBYvETBYrFTxQoFj9RoLKxqu8nwWvtWO08b2np6NGjzdw7qtra/hoAvvvuu9hs6dKl5tiFCxea+TPPPGPm1pbmADBhwoTYrFu3buZYa0tyADh69KiZf/DBB7HZ2rVrzbEjR440c2/Jb1vAR36iQLH4iQLF4icKFIufKFAsfqJAsfiJAsXiJwoUj+iOLF682MytLa5HjBhhjs10We1nn31m5uXl5bHZo48+ao71ltVevHgxo7xTp06x2dChQ82xixYtMnPv+glrufGCBQvMsd5y4S5dupj5U089Zea5xCO6icjE4icKFIufKFAsfqJAsfiJAsXiJwoUi58oUOzzR9asWWPm1jHb48ePN8cePHjQzOvr683cO6raus7gxIkT5lhv23FPRUWFmVt9fu9o8rvvvtvMvfHDhw+Pzbxj0615A0BhYaGZP/HEE2aeS+zzE5GJxU8UKBY/UaBY/ESBYvETBYrFTxQoFj9RoNx9+0XkVQA/B1CnqqOj23oC+AOAQQCqAMxV1ZO5m2buWcdcA0D79u1jM2utPwC89tprZn7fffeZuXfE9+zZs2Mzr8//7bffmnnfvn3NfNasWWZu7a3vHZP98ccfm3lZWZmZDxkyJDbbu3evObZdO7s0pk2bZuZtQUse+ZcCmPG9254HsFFVhwLYGH1ORG2IW/yq+hGAb7538xwAy6KPlwG4N8vzIqIca+1r/mJVrYk+rgVQnKX5EFGeZHxWn6qqdc2+iMwDMC/Tn0NE2dXaR/6jItIPAKK/6+K+UFWXqGqpqpa28mcRUQ60tvhXA7j6VmsZgLeyMx0iyhe3+EXkTQCfARguIodF5HEACwFME5F9AP4x+pyI2pBg1vNbfXoAWL9+vZlba+69s9pffvllMz916pSZz58/38yfe+652Oyhhx4yxzY0NJj5gQMHzNz7/bHOud+4caM5dsKECWZ+6dIlMz9z5kxsdvnyZXNsaan9KtXbg2HmzJlm7s09E1zPT0QmFj9RoFj8RIFi8RMFisVPFCgWP1GgMr68t63wWjte68Zafup97wEDBpj53LlzzfyFF14w80ceeSQ281pW1157rZl/+umnZn7PPfeY+eDBg2Ozbt26mWO/+uorM/fakBMnTozNvvjiC3Psjh07zHzSpElm7t2vuWz1tRQf+YkCxeInChSLnyhQLH6iQLH4iQLF4icKFIufKFDB9Pk93tLUysrK2Mxb0jtnzhwz37Vrl5nff//9Zn727NnYbOvWreZY7xoE7yjqTZs2mbl1jHZ5ebk51loODPjbhvfq1Ss28/673nvvPTMfO3asmXtLyNOAj/xEgWLxEwWKxU8UKBY/UaBY/ESBYvETBYrFTxSoYPr8HTt2NHNvbblI/G7I3trsDz/80My9dese6xjs8ePHm2OPHz9u5t5eBUVFRWZ+7Nix2Kx///7m2O3bt5u5Nzerl19XF3vIFAD/96V79+5m3qdPHzP/5pvvn32bf3zkJwoUi58oUCx+okCx+IkCxeInChSLnyhQLH6iQLl9fhF5FcDPAdSp6ujotpcA/ALA1SbuAlVdm6tJZsPAgQPNvKCgwMyt9dneMdfWevuW5N73t3r1Xj/Zu0bB2ncfAG655RYzf//992Mzb27e9Q/WvvyAvZeAt39D165dzdz7ffH6/Hv37jXzfGjJI/9SADOauf13qjo++pPqwieiH3KLX1U/ApD85UhElFWZvOZ/WkTKReRVEemRtRkRUV60tvh/D2AIgPEAagD8Ju4LRWSeiGwRkS2t/FlElAOtKn5VPaqq9araAOBlALHvvKjqElUtVVX7xEgiyqtWFb+I9Gvy6X0AdmdnOkSULy1p9b0JYCqAIhE5DODfAEwVkfEAFEAVgCdyOEciygG3+FX14WZufiUHc8kpb2/9Ll26mPnkyZNjM+8s9nPnzpm5t5fAlStXzHzQoEGxmdev9vbtv+mmm8x85cqVZt6jR/x7wd79MmbMGDP3rn+w8g4dOphjvX0Q6uvrzdw6MyAteIUfUaBY/ESBYvETBYrFTxQoFj9RoFj8RIEKZutub6tmL7e2xy4pKTHHettAe60877hn6/tbbUDAb/WtWbPGzEtL7Qs3re+/evVqc6zXfvXaddbW4EeOHDHHrl+/3synT59u5t5S6TTgIz9RoFj8RIFi8RMFisVPFCgWP1GgWPxEgWLxEwUqmD6/t+z24sWLZm71+SdMmGCO9Y6i9raRPnnyZKtzb0mv14/etGmTmXtbWHvXMFi87dZ79+5t5tax6sXFxebYLVvsXedqa2vNvC3gIz9RoFj8RIFi8RMFisVPFCgWP1GgWPxEgWLxEwUqmD6/12u3jrkGgBMnTsRm3lHTXk/Y6+NXVlaaubXef9SoUeZY7/qHWbNmmfn27dvN3NrC+uDBg+ZYb2tv7xqGvn37xmbWluIt4e3RYP3stOAjP1GgWPxEgWLxEwWKxU8UKBY/UaBY/ESBYvETBcrt84vIAADLARQDUABLVHWRiPQE8AcAgwBUAZirqnbDOkHdu3c3c29d+4gRI2KzU6dOmWOtawQAf82714u3fv6ZM2fMsV4vvaamxszvvPNOM9+5c2ds5t3n3vUP3pkDVVVVsdmqVavMsRMnTjRza68AwN/nIA1a8sh/BcCvVXUkgL8H8EsRGQngeQAbVXUogI3R50TURrjFr6o1qrot+vgMgD0ArgcwB8Cy6MuWAbg3V5Mkouz7Ua/5RWQQgFsAbAJQrKpXnxPWovFlARG1ES2+tl9EugD4I4Bfqerppq95VFVFpNmN6ERkHoB5mU6UiLKrRY/8ItIejYX/hqr+Kbr5qIj0i/J+AJo96VJVl6hqqaraJzoSUV65xS+ND/GvANijqr9tEq0GUBZ9XAbgrexPj4hypSVP+28D8E8AdonIjui2BQAWAvhfEXkcwCEAc3MzxeyYMmWKmQ8ePNjMCwsLY7M9e/aYY8+fP2/mFy5cMPPLly+buXWUtXd8uNfqs7YsB4Bt27aZuXW/ekePW606AOjcubOZW+1dr706depUM+/Xr5+Ze8uw08AtflX9GEBcU/Ou7E6HiPKFV/gRBYrFTxQoFj9RoFj8RIFi8RMFisVPFKhgtu72evHXXXedmVv9am+st3TV420TfezYsdjMW3paVFRk5taSXMBfKn3jjTfGZvv27TPH1tfXm7l3vzQ0NMRmDzzwgDl269atZu5du3Ho0CEzTwM+8hMFisVPFCgWP1GgWPxEgWLxEwWKxU8UKBY/UaCC6fN7a+ZXrlxp5rfffnts5m0hbfW6AX9rbm8baOs6gptvvtkc6x0f/uCDD5q5dxS1dXz58OHDzbEzZswwc2sfAwBQbXZnuRbxxlZXV5t5u3bpLy0+8hMFisVPFCgWP1GgWPxEgWLxEwWKxU8UKBY/UaDS34zMEq8X77HWjpeXl5tjx40bZ+a7du0yc68Xb+29b631B4DPP//czL2jqr0+/7p162KzgwcPmmO9+3XUqFFmXlfX7CFSAPxrBDp06GDm3nUAPXr0MPM04CM/UaBY/ESBYvETBYrFTxQoFj9RoFj8RIFi8RMFyu3zi8gAAMsBFANQAEtUdZGIvATgFwCuNpIXqOraXE00U9557N6ae+ss+UWLFpljly5dauYDBw40c29v/dOnT8dmXj/bW+9vfW8AmD9/vpnfdVf8Ke6dOnUyx3r79nv/T8eMGRObef/P7rjjDjPv1auXmVdUVJh5GrTkIp8rAH6tqttEpCuArSKyIcp+p6r/kbvpEVGuuMWvqjUAaqKPz4jIHgDX53piRJRbP+o1v4gMAnALgE3RTU+LSLmIvCoizV7PKCLzRGSLiGzJaKZElFUtLn4R6QLgjwB+paqnAfwewBAA49H4zOA3zY1T1SWqWqqqpVmYLxFlSYuKX0Tao7Hw31DVPwGAqh5V1XpVbQDwMgB7BQgRpYpb/NJ4zOsrAPao6m+b3N6vyZfdB2B39qdHRLki3tJEEZkM4C8AdgG4eubxAgAPo/EpvwKoAvBE9Oag9b1av5dyG+Yti12xYoWZe0eAnzx5Mjbz2mVDhgwx8yNHjph5SUmJmdfUxP9KWEuRAX9ZrdfGfPvtt2Ozxx57zBzblqmqfS57pCXv9n8MoLlvltqePhH5eIUfUaBY/ESBYvETBYrFTxQoFj9RoFj8RIFy+/xZ/WGB9vkz1adPHzMfNmxYbOb14b3jwb28d+/eZr5v377YzNtW3Nvau6qqysxD1dI+Px/5iQLF4icKFIufKFAsfqJAsfiJAsXiJwoUi58oUPnu8x8DcKjJTUUAjudtAj9OWueW1nkBnFtrZXNuA1XVvvgiktfi/8EPF9mS1r390jq3tM4L4NxaK6m58Wk/UaBY/ESBSrr4lyT88y1pnVta5wVwbq2VyNwSfc1PRMlJ+pGfiBKSSPGLyAwR+VJEKkXk+STmEEdEqkRkl4jsSPqIsegYtDoR2d3ktp4iskFE9kV/N3tMWkJze0lEqqP7boeIzExobgNE5M8i8oWIVIjIv0S3J3rfGfNK5H7L+9N+ESkA8H8ApgE4DGAzgIdV9Yu8TiSGiFQBKFXVxHvCIvIPAM4CWK6qo6Pb/h3AN6q6MPqHs4eq/mtK5vYSgLNJn9wcHSjTr+nJ0gDuBfDPSPC+M+Y1Fwncb0k88k8EUKmqB1T1EoAVAOYkMI/UU9WPAHzzvZvnAFgWfbwMjb88eRczt1RQ1RpV3RZ9fAbA1ZOlE73vjHklIonivx7A100+P4x0HfmtANaLyFYRmZf0ZJpR3ORkpFoAxUlOphnuyc359L2TpVNz37XmxOts4xt+PzRZVf8OwM8A/DJ6eptK2viaLU3tmhad3JwvzZws/VdJ3netPfE625Io/moAA5p8XhLdlgqqWh39XQdgFdJ3+vDRq4ekRn/XJTyfv0rTyc3NnSyNFNx3aTrxOoni3wxgqIgMFpFCAA8BWJ3APH5ARDpHb8RARDoDuBvpO314NYCy6OMyAG8lOJe/kZaTm+NOlkbC913qTrxW1bz/ATATje/47wfwQhJziJnXjQB2Rn8qkp4bgDfR+DTwMhrfG3kcQC8AGwHsA/A+gJ4pmtt/o/E053I0Flq/hOY2GY1P6csB7Ij+zEz6vjPmlcj9xiv8iALFN/yIAsXiJwoUi58oUCx+okCx+IkCxeInChSLnyhQLH6iQP0/W1O/uTN/tagAAAAASUVORK5CYII=\n",
132+
"text/plain": [
133+
"<Figure size 432x288 with 1 Axes>"
134+
]
135+
},
136+
"metadata": {
137+
"needs_background": "light"
138+
},
139+
"output_type": "display_data"
140+
}
141+
],
90142
"source": [
91143
"%matplotlib inline\n",
92144
"import random\n",
@@ -132,7 +184,7 @@
132184
},
133185
{
134186
"cell_type": "code",
135-
"execution_count": null,
187+
"execution_count": 5,
136188
"metadata": {
137189
"colab": {
138190
"autoexec": {
@@ -143,7 +195,16 @@
143195
"colab_type": "code",
144196
"id": "TTj2ZWMBN24i"
145197
},
146-
"outputs": [],
198+
"outputs": [
199+
{
200+
"name": "stdout",
201+
"output_type": "stream",
202+
"text": [
203+
"(60000, 28, 28)\n",
204+
"(60000,)\n"
205+
]
206+
}
207+
],
147208
"source": [
148209
"print(train_images.shape)\n",
149210
"print(train_labels.shape)"
@@ -165,7 +226,7 @@
165226
},
166227
{
167228
"cell_type": "code",
168-
"execution_count": null,
229+
"execution_count": 6,
169230
"metadata": {
170231
"colab": {
171232
"autoexec": {
@@ -208,7 +269,7 @@
208269
},
209270
{
210271
"cell_type": "code",
211-
"execution_count": null,
272+
"execution_count": 7,
212273
"metadata": {
213274
"colab": {
214275
"autoexec": {
@@ -219,7 +280,16 @@
219280
"colab_type": "code",
220281
"id": "E9yrkEENQ9Vz"
221282
},
222-
"outputs": [],
283+
"outputs": [
284+
{
285+
"name": "stdout",
286+
"output_type": "stream",
287+
"text": [
288+
"Before 9\n",
289+
"After [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n"
290+
]
291+
}
292+
],
223293
"source": [
224294
"NUM_CAT = 10\n",
225295
"\n",
@@ -252,7 +322,7 @@
252322
},
253323
{
254324
"cell_type": "code",
255-
"execution_count": null,
325+
"execution_count": 10,
256326
"metadata": {
257327
"colab": {
258328
"autoexec": {
@@ -263,7 +333,26 @@
263333
"colab_type": "code",
264334
"id": "mNscbvHkUrMc"
265335
},
266-
"outputs": [],
336+
"outputs": [
337+
{
338+
"name": "stdout",
339+
"output_type": "stream",
340+
"text": [
341+
"Model: \"sequential_1\"\n",
342+
"_________________________________________________________________\n",
343+
"Layer (type) Output Shape Param # \n",
344+
"=================================================================\n",
345+
"dense_2 (Dense) (None, 512) 401920 \n",
346+
"_________________________________________________________________\n",
347+
"dense_3 (Dense) (None, 10) 5130 \n",
348+
"=================================================================\n",
349+
"Total params: 407,050\n",
350+
"Trainable params: 407,050\n",
351+
"Non-trainable params: 0\n",
352+
"_________________________________________________________________\n"
353+
]
354+
}
355+
],
267356
"source": [
268357
"model = tf.keras.Sequential()\n",
269358
"model.add(tf.keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)))\n",
@@ -291,7 +380,7 @@
291380
},
292381
{
293382
"cell_type": "code",
294-
"execution_count": null,
383+
"execution_count": 11,
295384
"metadata": {
296385
"colab": {
297386
"autoexec": {
@@ -302,7 +391,34 @@
302391
"colab_type": "code",
303392
"id": "gBs0LwqcVXx6"
304393
},
305-
"outputs": [],
394+
"outputs": [
395+
{
396+
"name": "stdout",
397+
"output_type": "stream",
398+
"text": [
399+
"Epoch 1/5\n",
400+
"60000/60000==============================] - 5s 75us/sample - loss: 0.4949 - acc: 0.8230\n",
401+
"Epoch 2/5\n",
402+
"60000/60000==============================] - 4s 69us/sample - loss: 0.3785 - acc: 0.8664\n",
403+
"Epoch 3/5\n",
404+
"60000/60000==============================] - 4s 68us/sample - loss: 0.3547 - acc: 0.8759\n",
405+
"Epoch 4/5\n",
406+
"60000/60000==============================] - 4s 69us/sample - loss: 0.3424 - acc: 0.8841\n",
407+
"Epoch 5/5\n",
408+
"60000/60000==============================] - 4s 68us/sample - loss: 0.3352 - acc: 0.8880\n"
409+
]
410+
},
411+
{
412+
"data": {
413+
"text/plain": [
414+
"<tensorflow.python.keras.callbacks.History at 0x7fab27af79b0>"
415+
]
416+
},
417+
"execution_count": 11,
418+
"metadata": {},
419+
"output_type": "execute_result"
420+
}
421+
],
306422
"source": [
307423
"model.fit(train_images, train_labels, epochs=5)"
308424
]
@@ -320,7 +436,7 @@
320436
},
321437
{
322438
"cell_type": "code",
323-
"execution_count": null,
439+
"execution_count": 12,
324440
"metadata": {
325441
"colab": {
326442
"autoexec": {
@@ -331,7 +447,16 @@
331447
"colab_type": "code",
332448
"id": "iuqDe4NiWBpU"
333449
},
334-
"outputs": [],
450+
"outputs": [
451+
{
452+
"name": "stdout",
453+
"output_type": "stream",
454+
"text": [
455+
"10000/10000==============================] - 0s 44us/sample - loss: 0.4367 - acc: 0.8591\n",
456+
"Test accuracy: 0.86\n"
457+
]
458+
}
459+
],
335460
"source": [
336461
"loss, accuracy = model.evaluate(test_images, test_labels)\n",
337462
"print('Test accuracy: %.2f' % (accuracy))"
@@ -380,7 +505,7 @@
380505
"name": "python",
381506
"nbconvert_exporter": "python",
382507
"pygments_lexer": "ipython3",
383-
"version": "3.7.0"
508+
"version": "3.6.7"
384509
}
385510
},
386511
"nbformat": 4,

0 commit comments

Comments
 (0)