From 4d773006192e4222f21b2c5a9a393a551fe0a2cb Mon Sep 17 00:00:00 2001
From: kaixindelele <1985790413@qq.com>
Date: Fri, 21 Jul 2023 23:24:40 +0800
Subject: [PATCH] =?UTF-8?q?=E9=87=8D=E6=96=B0=E6=8E=92=E7=89=88ChatPaper?=
=?UTF-8?q?=E7=9A=84=E6=96=87=E4=BB=B6=E5=92=8C=E8=B7=AF=E5=BE=84?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
ChatReviewerAndResponse/README.md | 3 +
.../ReviewFormat.txt | 0
.../chat_response.py | 0
.../chat_reviewer.py | 0
.../get_paper.py | 0
.../review_comments.txt | 134 ++++-----
.../Private/README.md | 0
.../Private/apikey.ini | 0
{deploy => HuggingFaceDeploy}/Private/app.py | 0
.../Private/image.jpeg | Bin
.../Private/optimizeOpenAI.py | 0
.../Private/requirements.txt | 0
{deploy => HuggingFaceDeploy}/Public/app.py | 0
.../Public/optimizeOpenAI.py | 0
.../Public/requirements.txt | 0
HuggingFaceDeploy/README.md | 3 +
app.py => HuggingFaceDeploy/app.py | 0
README-old.md | 283 ------------------
README.md | 22 +-
auto_survey/README.md | 4 +
chat_pubmed.py | 22 --
.../__pycache__/optimizeOpenAI.cpython-39.pyc | Bin 6742 -> 0 bytes
Makefile => docker/Makefile | 0
docker/README.md | 3 +
build.sh => docker/build.sh | 0
dev.sh => docker/dev.sh | 0
.../docker-compose.yaml | 0
make.bat => docker/make.bat | 70 ++---
tagpush.sh => docker/tagpush.sh | 0
get_paper_from_pdf.py | 274 -----------------
ChatPaper.ipynb => others/ChatPaper.ipynb | 0
.../chat_arxiv_maomao.py | 0
.../google_scholar_spider.py | 0
others/machine_learning.csv | 51 ++++
.../project_analysis.md | 0
35 files changed, 173 insertions(+), 696 deletions(-)
create mode 100644 ChatReviewerAndResponse/README.md
rename ReviewFormat.txt => ChatReviewerAndResponse/ReviewFormat.txt (100%)
rename chat_response.py => ChatReviewerAndResponse/chat_response.py (100%)
rename chat_reviewer.py => ChatReviewerAndResponse/chat_reviewer.py (100%)
rename get_paper.py => ChatReviewerAndResponse/get_paper.py (100%)
rename review_comments.txt => ChatReviewerAndResponse/review_comments.txt (98%)
rename {deploy => HuggingFaceDeploy}/Private/README.md (100%)
rename {deploy => HuggingFaceDeploy}/Private/apikey.ini (100%)
rename {deploy => HuggingFaceDeploy}/Private/app.py (100%)
rename {deploy => HuggingFaceDeploy}/Private/image.jpeg (100%)
rename {deploy => HuggingFaceDeploy}/Private/optimizeOpenAI.py (100%)
rename {deploy => HuggingFaceDeploy}/Private/requirements.txt (100%)
rename {deploy => HuggingFaceDeploy}/Public/app.py (100%)
rename {deploy => HuggingFaceDeploy}/Public/optimizeOpenAI.py (100%)
rename {deploy => HuggingFaceDeploy}/Public/requirements.txt (100%)
create mode 100644 HuggingFaceDeploy/README.md
rename app.py => HuggingFaceDeploy/app.py (100%)
delete mode 100644 README-old.md
delete mode 100644 chat_pubmed.py
delete mode 100644 deploy/Private/__pycache__/optimizeOpenAI.cpython-39.pyc
rename Makefile => docker/Makefile (100%)
create mode 100644 docker/README.md
rename build.sh => docker/build.sh (100%)
mode change 100755 => 100644
rename dev.sh => docker/dev.sh (100%)
mode change 100755 => 100644
rename docker-compose.yaml => docker/docker-compose.yaml (100%)
rename make.bat => docker/make.bat (95%)
rename tagpush.sh => docker/tagpush.sh (100%)
mode change 100755 => 100644
delete mode 100644 get_paper_from_pdf.py
rename ChatPaper.ipynb => others/ChatPaper.ipynb (100%)
rename chat_arxiv_maomao.py => others/chat_arxiv_maomao.py (100%)
rename google_scholar_spider.py => others/google_scholar_spider.py (100%)
create mode 100644 others/machine_learning.csv
rename project_analysis.md => others/project_analysis.md (100%)
diff --git a/ChatReviewerAndResponse/README.md b/ChatReviewerAndResponse/README.md
new file mode 100644
index 0000000..1c66433
--- /dev/null
+++ b/ChatReviewerAndResponse/README.md
@@ -0,0 +1,3 @@
+首先,下载chatpaper整个项目后,打开项目时,单独打开ChatReviewerAndResponse这个文件夹。
+
+因为这两个项目互相独立,如果打开的是chatpaper文件夹,会导致路径不对!
\ No newline at end of file
diff --git a/ReviewFormat.txt b/ChatReviewerAndResponse/ReviewFormat.txt
similarity index 100%
rename from ReviewFormat.txt
rename to ChatReviewerAndResponse/ReviewFormat.txt
diff --git a/chat_response.py b/ChatReviewerAndResponse/chat_response.py
similarity index 100%
rename from chat_response.py
rename to ChatReviewerAndResponse/chat_response.py
diff --git a/chat_reviewer.py b/ChatReviewerAndResponse/chat_reviewer.py
similarity index 100%
rename from chat_reviewer.py
rename to ChatReviewerAndResponse/chat_reviewer.py
diff --git a/get_paper.py b/ChatReviewerAndResponse/get_paper.py
similarity index 100%
rename from get_paper.py
rename to ChatReviewerAndResponse/get_paper.py
diff --git a/review_comments.txt b/ChatReviewerAndResponse/review_comments.txt
similarity index 98%
rename from review_comments.txt
rename to ChatReviewerAndResponse/review_comments.txt
index e6e8ee7..f5ff149 100644
--- a/review_comments.txt
+++ b/ChatReviewerAndResponse/review_comments.txt
@@ -1,68 +1,68 @@
-#1 Reviewer
-
-Overall Review:
-The paper proposes a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection. The proposed model selects the most explainable sentences for verdicts based on raw reports, thereby reducing the dependency on fact-checked reports. The paper presents two explainable fake news datasets and experimental results demonstrating that the proposed model outperforms state-of-the-art detection baselines and generates high-quality explanations.
-
-Paper Strength:
-(1) The paper addresses an important and timely problem of fake news detection and provide insights into the limitations of existing methods.
-(2) The proposed CofCED model is innovative and utilizes a hierarchical encoder and cascaded selectors for selecting explainable sentences.
-(3) The paper contributes to the research community by presenting two publicly available datasets for explainable fake news detection.
-
-Paper Weakness:
-(1) The paper could benefit from more detailed clarification of the proposed model's architecture and implementation details.
-(2) The paper lacks comparison with more relevant and widely-used baseline methods in the field.
-(3) Although the paper constructs two explainable fake news datasets, the paper does not describe the process and criteria for creating them.
-
-Questions To Authors And Suggestions For Rebuttal:
-(1) Can the authors provide additional information on the proposed model's architecture and implementation details?
-(2) Can the authors compare their proposed method with additional relevant and widely-used baseline methods in the field?
-(3) Can the authors provide more details on the process and criteria for creating the two constructed explainable fake news datasets?
-
-Overall score (1-5): 4
-The paper provides an innovative approach to fake news detection using a cascade of selectors and presents two publicly available datasets for the research community. However, the paper could benefit from additional details on architectural and implementation details and comparisons with more relevant baselines.
-
-#2 Reviewer
-
-Overall Review:
-The paper proposes a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection. The proposed model selects the most explainable sentences for verdicts based on raw reports, thereby reducing the dependency on fact-checked reports. The paper presents two explainable fake news datasets and experimental results demonstrating that the proposed model outperforms state-of-the-art detection baselines and generates high-quality explanations.
-
-Paper Strength:
-(1) The paper addresses an important and timely problem of fake news detection and provide insights into the limitations of existing methods.
-(2) The proposed CofCED model is innovative and utilizes a hierarchical encoder and cascaded selectors for selecting explainable sentences.
-(3) The paper contributes to the research community by presenting two publicly available datasets for explainable fake news detection.
-
-Paper Weakness:
-(1) The paper could benefit from more detailed clarification of the proposed model's architecture and implementation details.
-(2) The paper lacks comparison with more relevant and widely-used baseline methods in the field.
-(3) Although the paper constructs two explainable fake news datasets, the paper does not describe the process and criteria for creating them.
-
-Questions To Authors And Suggestions For Rebuttal:
-(1) Can the authors provide additional information on the proposed model's architecture and implementation details?
-(2) Can the authors compare their proposed method with additional relevant and widely-used baseline methods in the field?
-(3) Can the authors provide more details on the process and criteria for creating the two constructed explainable fake news datasets?
-
-Overall score (1-5): 4
-The paper provides an innovative approach to fake news detection using a cascade of selectors and presents two publicly available datasets for the research community. However, the paper could benefit from additional details on architectural and implementation details and comparisons with more relevant baselines.
-
-#3 Reviewer
-
-Overall Review:
-The paper proposes a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection. The proposed model selects the most explainable sentences for verdicts based on raw reports, thereby reducing the dependency on fact-checked reports. The paper presents two explainable fake news datasets and experimental results demonstrating that the proposed model outperforms state-of-the-art detection baselines and generates high-quality explanations.
-
-Paper Strength:
-(1) The paper addresses an important and timely problem of fake news detection and provide insights into the limitations of existing methods.
-(2) The proposed CofCED model is innovative and utilizes a hierarchical encoder and cascaded selectors for selecting explainable sentences.
-(3) The paper contributes to the research community by presenting two publicly available datasets for explainable fake news detection.
-
-Paper Weakness:
-(1) The paper could benefit from more detailed clarification of the proposed model's architecture and implementation details.
-(2) The paper lacks comparison with more relevant and widely-used baseline methods in the field.
-(3) Although the paper constructs two explainable fake news datasets, the paper does not describe the process and criteria for creating them.
-
-Questions To Authors And Suggestions For Rebuttal:
-(1) Can the authors provide additional information on the proposed model's architecture and implementation details?
-(2) Can the authors compare their proposed method with additional relevant and widely-used baseline methods in the field?
-(3) Can the authors provide more details on the process and criteria for creating the two constructed explainable fake news datasets?
-
-Overall score (1-5): 4
+#1 Reviewer
+
+Overall Review:
+The paper proposes a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection. The proposed model selects the most explainable sentences for verdicts based on raw reports, thereby reducing the dependency on fact-checked reports. The paper presents two explainable fake news datasets and experimental results demonstrating that the proposed model outperforms state-of-the-art detection baselines and generates high-quality explanations.
+
+Paper Strength:
+(1) The paper addresses an important and timely problem of fake news detection and provide insights into the limitations of existing methods.
+(2) The proposed CofCED model is innovative and utilizes a hierarchical encoder and cascaded selectors for selecting explainable sentences.
+(3) The paper contributes to the research community by presenting two publicly available datasets for explainable fake news detection.
+
+Paper Weakness:
+(1) The paper could benefit from more detailed clarification of the proposed model's architecture and implementation details.
+(2) The paper lacks comparison with more relevant and widely-used baseline methods in the field.
+(3) Although the paper constructs two explainable fake news datasets, the paper does not describe the process and criteria for creating them.
+
+Questions To Authors And Suggestions For Rebuttal:
+(1) Can the authors provide additional information on the proposed model's architecture and implementation details?
+(2) Can the authors compare their proposed method with additional relevant and widely-used baseline methods in the field?
+(3) Can the authors provide more details on the process and criteria for creating the two constructed explainable fake news datasets?
+
+Overall score (1-5): 4
+The paper provides an innovative approach to fake news detection using a cascade of selectors and presents two publicly available datasets for the research community. However, the paper could benefit from additional details on architectural and implementation details and comparisons with more relevant baselines.
+
+#2 Reviewer
+
+Overall Review:
+The paper proposes a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection. The proposed model selects the most explainable sentences for verdicts based on raw reports, thereby reducing the dependency on fact-checked reports. The paper presents two explainable fake news datasets and experimental results demonstrating that the proposed model outperforms state-of-the-art detection baselines and generates high-quality explanations.
+
+Paper Strength:
+(1) The paper addresses an important and timely problem of fake news detection and provide insights into the limitations of existing methods.
+(2) The proposed CofCED model is innovative and utilizes a hierarchical encoder and cascaded selectors for selecting explainable sentences.
+(3) The paper contributes to the research community by presenting two publicly available datasets for explainable fake news detection.
+
+Paper Weakness:
+(1) The paper could benefit from more detailed clarification of the proposed model's architecture and implementation details.
+(2) The paper lacks comparison with more relevant and widely-used baseline methods in the field.
+(3) Although the paper constructs two explainable fake news datasets, the paper does not describe the process and criteria for creating them.
+
+Questions To Authors And Suggestions For Rebuttal:
+(1) Can the authors provide additional information on the proposed model's architecture and implementation details?
+(2) Can the authors compare their proposed method with additional relevant and widely-used baseline methods in the field?
+(3) Can the authors provide more details on the process and criteria for creating the two constructed explainable fake news datasets?
+
+Overall score (1-5): 4
+The paper provides an innovative approach to fake news detection using a cascade of selectors and presents two publicly available datasets for the research community. However, the paper could benefit from additional details on architectural and implementation details and comparisons with more relevant baselines.
+
+#3 Reviewer
+
+Overall Review:
+The paper proposes a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection. The proposed model selects the most explainable sentences for verdicts based on raw reports, thereby reducing the dependency on fact-checked reports. The paper presents two explainable fake news datasets and experimental results demonstrating that the proposed model outperforms state-of-the-art detection baselines and generates high-quality explanations.
+
+Paper Strength:
+(1) The paper addresses an important and timely problem of fake news detection and provide insights into the limitations of existing methods.
+(2) The proposed CofCED model is innovative and utilizes a hierarchical encoder and cascaded selectors for selecting explainable sentences.
+(3) The paper contributes to the research community by presenting two publicly available datasets for explainable fake news detection.
+
+Paper Weakness:
+(1) The paper could benefit from more detailed clarification of the proposed model's architecture and implementation details.
+(2) The paper lacks comparison with more relevant and widely-used baseline methods in the field.
+(3) Although the paper constructs two explainable fake news datasets, the paper does not describe the process and criteria for creating them.
+
+Questions To Authors And Suggestions For Rebuttal:
+(1) Can the authors provide additional information on the proposed model's architecture and implementation details?
+(2) Can the authors compare their proposed method with additional relevant and widely-used baseline methods in the field?
+(3) Can the authors provide more details on the process and criteria for creating the two constructed explainable fake news datasets?
+
+Overall score (1-5): 4
The paper provides an innovative approach to fake news detection using a cascade of selectors and presents two publicly available datasets for the research community. However, the paper could benefit from additional details on architectural and implementation details and comparisons with more relevant baselines.
\ No newline at end of file
diff --git a/deploy/Private/README.md b/HuggingFaceDeploy/Private/README.md
similarity index 100%
rename from deploy/Private/README.md
rename to HuggingFaceDeploy/Private/README.md
diff --git a/deploy/Private/apikey.ini b/HuggingFaceDeploy/Private/apikey.ini
similarity index 100%
rename from deploy/Private/apikey.ini
rename to HuggingFaceDeploy/Private/apikey.ini
diff --git a/deploy/Private/app.py b/HuggingFaceDeploy/Private/app.py
similarity index 100%
rename from deploy/Private/app.py
rename to HuggingFaceDeploy/Private/app.py
diff --git a/deploy/Private/image.jpeg b/HuggingFaceDeploy/Private/image.jpeg
similarity index 100%
rename from deploy/Private/image.jpeg
rename to HuggingFaceDeploy/Private/image.jpeg
diff --git a/deploy/Private/optimizeOpenAI.py b/HuggingFaceDeploy/Private/optimizeOpenAI.py
similarity index 100%
rename from deploy/Private/optimizeOpenAI.py
rename to HuggingFaceDeploy/Private/optimizeOpenAI.py
diff --git a/deploy/Private/requirements.txt b/HuggingFaceDeploy/Private/requirements.txt
similarity index 100%
rename from deploy/Private/requirements.txt
rename to HuggingFaceDeploy/Private/requirements.txt
diff --git a/deploy/Public/app.py b/HuggingFaceDeploy/Public/app.py
similarity index 100%
rename from deploy/Public/app.py
rename to HuggingFaceDeploy/Public/app.py
diff --git a/deploy/Public/optimizeOpenAI.py b/HuggingFaceDeploy/Public/optimizeOpenAI.py
similarity index 100%
rename from deploy/Public/optimizeOpenAI.py
rename to HuggingFaceDeploy/Public/optimizeOpenAI.py
diff --git a/deploy/Public/requirements.txt b/HuggingFaceDeploy/Public/requirements.txt
similarity index 100%
rename from deploy/Public/requirements.txt
rename to HuggingFaceDeploy/Public/requirements.txt
diff --git a/HuggingFaceDeploy/README.md b/HuggingFaceDeploy/README.md
new file mode 100644
index 0000000..7c92568
--- /dev/null
+++ b/HuggingFaceDeploy/README.md
@@ -0,0 +1,3 @@
+和docker的配置类似,现在的版本,基本上就是一个python文件,用huggingface的必要性没那么高
+
+需要的话,可以直接使用我们的网站,chatwithpaper.org,效果类似。
\ No newline at end of file
diff --git a/app.py b/HuggingFaceDeploy/app.py
similarity index 100%
rename from app.py
rename to HuggingFaceDeploy/app.py
diff --git a/README-old.md b/README-old.md
deleted file mode 100644
index deb9b58..0000000
--- a/README-old.md
+++ /dev/null
@@ -1,283 +0,0 @@
-# ChatPaper
-
-
-
-
-针对很多其他非计算机同学的需求,我们团队已经在全力开发网页版了!敬请期待!也欢迎有前后端经验的大佬联系我们!
-For the needs of many other non-computer students, our team has been working hard to develop the web version! Stay tuned!
-Also welcome to the experts who have the experience about web and server to contact us!
-
-我们的愿景是:利用AI全方位加速人类科研
-希望能够集中超过GPT4.0的剩下5%的人类科研工作者,一起努力进化。
-
-
-**明天更新新必应自动生成的代码:完美获取特定关键词的最新arxiv论文**,不会现在这样出现关键词和官网搜索不一致的情况!
-
-
-**GPT4的API开放后,ChatPaper才能进化成ChatPaperPlus!**
-
-**After GPT4 API, our ChatPaper will evolve to ChatPaperPlus!**
-
-To keep up with the huge arxiv papers and AI’s fast progress, we humans need to evolve. We download the latest papers on arxiv based on user keywords, and use ChatGPT3.5 API’s powerful summarization to condense them into a fixed format with minimal text and easy readability. We provide the most information for everyone to choose which papers to read deeply.
-
-## TODO list:
-1. 将提问换成英文--已经完成
-2. 用更加鲁棒的方法解析Method章节--使用交互模式,来判断
-3. 打包成exe文件,供小白用户直接使用。--放弃这个功能,全力打造网页版
-4. 如果有佬愿意搭建网站,也可以合作--已经合作
-5. 实现一个ChatReview版本,供大家审稿的时候参考(但可能有学术伦理问题)--正在尝试
-6. 其他的优化功能正在添加:本地PDF批量总结;token的自动评估; ---completed!
-7. Thanks for recommending ChatPaper by [AK](https://twitter.com/_akhaliq)! Next we will set up an English output mode. ---completed!
-8. **为了感谢2k stars的点赞,我们团队发布以下更新预告:1. colab版本,修复作者单位瞎编的问题,2. 优化提问词,使得输出更加靠谱。**--colab版本已经发布,其他优化,合作者正在调试,敬请期待。
-
-## 作者有话说:
-1. colab版本的报错,主要是网络问题,希望大家能先谷歌再提issue,因为我对谷歌的网络问题也不熟悉.
-2. 另外有一个重大的问题有待解决是,arxiv搜索最新的论文时,query关键词和实际的论文关联性很低,这个大家有没有好的解决方案?
-
-
-我们为ChatPaper提供了一个Web图形界面。您可以选择在私有或者公共环境中部署ChatPaper,也可以在Hugging Face上[在线体验](https://huggingface.co/spaces/wangrongsheng/ChatPaper) 我们所提供的公共服务。
-
-**这个功能免费,且代码开源,大家放心使用!**
-
-关于API如何获取,首先你得有一个没有被封的ChatGPT账号,然后根据下面链接去生成: [如何获取Api Key](https://chatgpt.cn.obiscr.com/blog/posts/2023/How-to-get-api-key/)
-
-![233](https://github.com/kaixindelele/ChatPaper/blob/main/images/chatpaper_0317.png)
-
-> [私有化部署](./deploy/Private/README.md) 、公共化部署,我们推荐您直接使用Hugging Face [在线体验](https://huggingface.co/spaces/wangrongsheng/ChatPaper) 。
-
-
-## 动机
-
-面对每天海量的arxiv论文,以及AI极速的进化,我们人类必须也要一起进化才能不被淘汰。
-
-作为中科大强化学习方向的博士生,我深感焦虑,现在AI的进化速度,我开脑洞都赶不上。
-
-因此我开发了这款ChatPaper,尝试用魔法打败魔法。
-
-ChatPaper是一款论文总结工具。AI用一分钟总结论文,用户用一分钟阅读AI总结的论文。
-
-它可以根据用户输入的关键词,自动在arxiv上下载最新的论文,再利用ChatGPT3.5的API接口强大的总结能力,将论文总结为固定的格式,以最少的文本,最低的阅读门槛,为大家提供最大信息量,以决定该精读哪些文章。
-
-也可以提供本地的PDF文档地址,直接处理。
-
-一般一个晚上就可以速通一个小领域的最新文章。我自己测试了两天了。
-
-祝大家在这个极速变化的时代中,能够和AI一起进化!
-
-这段代码虽然不多,但整个流程走通也花了我近一周的时间,今天分享给大家。
-
-不知道能不能用这个工具,实现我小时候的梦想-- **如果每个中国人给我一块钱,那我就发财了** 哈哈~
-
-言归正传,不强制付费,但是真的希望每个觉得能帮你节省时间的研究生,在花几块钱买API的同时,能够给我一块钱奖励,非常感谢!
-
-您的支持,是我持续更新的动力!如果有大佬愿意多支持,也是非常欢迎的!
-
-欢迎大家加入光荣的进化!
-
-
-
-
-
-
-
-
-
-## 使用步骤:
-Windows, Mac和Linux系统应该都可以
-
-python版本最好是3.9,其他版本应该也没啥问题
-
-1. 在apikey.ini中填入你的openai key。注意,这个代码纯本地项目,你的key很安全!如果不被OpenAI封的话~
-小白用户比较多,我直接给截图示意下可能会更好:
-
-
-
-
-2. 使用过程要保证全局代理!
-如果客户端时clash的话,可以参考这个进行配置:
-
-
-
-
-
-3. 安装依赖:最好翻墙,或者用国内源。
-``` bash
-pip install -r requirements.txt
-```
-
-4.1. Arxiv在线批量搜索+下载+总结: 运行chat_paper.py, 比如:
-```python
-python chat_paper.py --query "chatgpt robot" --filter_keys "chatgpt robot" --max_results 3
-```
-
-**注意:搜索词无法识别`-`,只能识别空格!所以原标题的连字符最好不要用!** 感谢网友提供的信息
-
-4.2. Arxiv在线批量搜索+下载+总结+高级搜索: 运行chat_paper.py, 比如:
-```python
-python chat_paper.py --query "all: reinforcement learning robot 2023" --filter_keys "reinforcement robot" --max_results 3
-```
-
-4.3. Arxiv在线批量搜索+下载+总结+高级搜索+指定作者: 运行chat_paper.py, 比如:
-```python
-python chat_paper.py --query "ti: Sergey Levine" --filter_keys "reinforcement robot" --max_results 3
-```
-
-4.4. 本地pdf总结: 运行chat_paper.py, 比如:
-```python
-python chat_paper.py --pdf_path "demo.pdf"
-```
-
-4.5. 本地文件夹批量总结: 运行chat_paper.py, 比如:
-```python
-python chat_paper.py --pdf_path "your_absolute_path"
-```
-
-B站讲解视频:[我把ChatPaper开源了!AI速读PDF论文和速通Arxiv论文](https://www.bilibili.com/video/BV1EM411x7Tr/)
-
-**注意:key_word不重要,但是filter_keys非常重要!**
-一定要修改成你的关键词。
-
-另外关于arxiv的搜索关键词可以参考下图:
-
-
-
-
-5. 参数介绍:
-```
-
-[--pdf_path 是否直接读取本地的pdf文档?如果不设置的话,直接从arxiv上搜索并且下载]
-[--query 向arxiv网站搜索的关键词,有一些缩写示范:all, ti(title), au(author),一个query示例:all: ChatGPT robot]
-[--key_word 你感兴趣领域的关键词,重要性不高]
-[--filter_keys 你需要在摘要文本中搜索的关键词,必须保证每个词都出现,才算是你的目标论文]
-[--max_results 每次搜索的最大文章数,经过上面的筛选,才是你的目标论文数,chat只总结筛选后的论文]
-[--sort arxiv的排序方式,默认是相关性,也可以是时间,arxiv.SortCriterion.LastUpdatedDate 或者 arxiv.SortCriterion.Relevance, 别加引号]
-[--save_image 是否存图片,如果你没注册gitee的图床的话,默认为false]
-[--file_format 文件保存格式,默认是markdown的md格式,也可以是txt]
-
-parser.add_argument("--pdf_path", type=str, default='', help="if none, the bot will download from arxiv with query")
-parser.add_argument("--query", type=str, default='all: ChatGPT robot', help="the query string, ti: xx, au: xx, all: xx,")
-parser.add_argument("--key_word", type=str, default='reinforcement learning', help="the key word of user research fields")
-parser.add_argument("--filter_keys", type=str, default='ChatGPT robot', help="the filter key words, 摘要中每个单词都得有,才会被筛选为目标论文")
-parser.add_argument("--max_results", type=int, default=1, help="the maximum number of results")
-parser.add_argument("--sort", default=arxiv.SortCriterion.Relevance, help="another is arxiv.SortCriterion.LastUpdatedDate")
-parser.add_argument("--save_image", default=False, help="save image? It takes a minute or two to save a picture! But pretty")
-parser.add_argument("--file_format", type=str, default='md', help="导出的文件格式,如果存图片的话,最好是md,如果不是的话,txt的不会乱")
-
-```
-
-## 常见网络报错:
-1. pip 安装错误:
-![pip error](https://user-images.githubusercontent.com/28528386/224949301-5871610a-dd8e-4c44-b412-174ce593ad3d.png)
-
-推荐关掉梯子,使用国内源下载:
-```bash
-pip install -r requirements.txt -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
-```
-
-
-2. 调用openai的chatgpt api时出现APIConnectionError, 如何解决?
-参考知乎回答:
-https://www.zhihu.com/question/587322263/answer/2919916984
-
-直接在chat_paper.py里加上
-
-os.environ["http_proxy"] = "http://<代理ip>:<代理端口>"
-os.environ["https_proxy"] = "http://<代理ip>:<代理端口>"
-
-代理ip和端口需要你在Windows系统里面查找。
-![2333](https://user-images.githubusercontent.com/28528386/224496999-1a8a7946-00aa-4d51-9f18-45bdde4215b9.png)
-
-
-3. API被OpenAI禁了的报错:
-
-![3222](https://user-images.githubusercontent.com/28528386/224464704-80f9b010-14f8-4df0-9635-cdfcb2faea51.png)
-
-这种情况只能用新号了。另外一定要注意一个号尽量不要多刷,节点一定要靠谱,千万不能用大陆和香港的节点,用了就寄。
-
-
-## 是否插图?以及插图教程:
-先不加了
-
-## 项目的使用技巧:
-快速刷特定关键词的论文,不插图的话,每张篇文章需要花一分钟,阅读时间差不多一分钟。
-
-本项目可以用于跟踪领域最新论文,或者关注其他领域的论文,可以批量生成总结,最大可生成1000(如果你能等得及的话)。
-虽然Chat可能有瞎编的成分,但是在我的规范化提问的框架下,它的主要信息是保熟的。
-
-数字部分需要大家重新去原文检查!
-
-找到好的文章之后,可以精读这篇文章。
-
-推荐另外两个精读论文的AI辅助网站:https://typeset.io/ 和chatpdf。
-我的教程: [强化学徒:论文阅读神器SciSpace(Typeset.io)测评-和AI一起进化](https://zhuanlan.zhihu.com/p/611874187)
-
-和上面这两个工具的主要优势在于,ChatPaper可以批量自动总结最新论文,可以极大的降低阅读门槛,尤其是我们国人。
-缺点也很明显,ChatPaper没有交互功能,不能连续提问,但我觉得这个重要性不大~
-
-
-## 致谢:
-本项目三天一千star的时刻,我补一下对这个项目的促成的各位致谢!
-1. 群友和实验室同学的技术支持和大量转发!还有张老板和化老板的出谋划策。
-2. [Siyuan](https://github.com/HouSiyuan2001)同学在我开始项目的时候,分享了两个核心函数,节省了很多时间。
-3. [rongsheng](https://github.com/WangRongsheng)同学的在线网站,让这个项目可以使得更多的技术小白,可以尝试。
-4. [Arxiv](https://github.com/lukasschwab/arxiv.py)的作者提供的好用的arxiv论文下载包。
-5. [PyMuPDF](https://github.com/pymupdf/PyMuPDF)提供良好的PDF解析工具。让整个信息流得以打通。
-6. OpenAI一方面做出了杰出的AI,另外一方面禁了我们国家,搞得我都不知道该怎么写这行。
-7. 感谢Ex-ChatGPT的作者分享的各种ChatGPT的开发细节,开发过程中学习良多。另外给计算机专业的佬们,推荐这款非常强大的开源工具:
-[Ex-ChatGPT](https://github.com/circlestarzero/EX-chatGPT) 是一个强大的工具平台,能让 ChatGPT 能够调用外部 API,例如 WolframAlpha、Google 和 WikiMedia,以提供更准确和及时的答案。
-江湖人称 GoogleChat.
-8. 最后感谢GitHub官方,帮我们这个项目列入了[热榜第五](https://github.com/trending),获得了大量的关注!
-
-
-
-## 解析示例:
-
-Paper:1
-
--
-
Title: Diffusion Policy: Visuomotor Policy Learning via Action Diffusion 中文标题: 通过行为扩散的视觉运动策略学习
-
--
-
Authors: Haonan Lu, Yufeng Yuan, Daohua Xie, Kai Wang, Baoxiong Jia, Shuaijun Chen
-
--
-
Affiliation: 中南大学
-
--
-
Keywords: Diffusion Policy, Visuomotor Policy, robot learning, denoising diffusion process
-
--
-
Urls: http://arxiv.org/abs/2303.04137v1, Github: None
-
--
-
Summary:
-
-
-(1): 本文研究的是机器人视觉动作策略的学习。机器人视觉动作策略的学习是指根据观察到的信息输出相应的机器人运动动作,这一任务较为复杂和具有挑战性。
-(2): 过去的方法包括使用高斯混合模型、分类表示,或者切换策略表示等不同的动作表示方式,但依然存在多峰分布、高维输出空间等挑战性问题。本文提出一种新的机器人视觉运动策略模型 - Diffusion Policy,其结合了扩散模型的表达能力,克服了传统方法的局限性,可以表达任意分布并支持高维空间。本模型通过学习代价函数的梯度,使用随机Langevin动力学算法进行迭代优化,最终输出机器人动作。
-(3): 本文提出的机器人视觉动作策略 - Diffusion Policy,将机器人动作表示为一个条件去噪扩散过程。该模型可以克服多峰分布、高维输出空间等问题,提高了策略学习的表达能力。同时,本文通过引入展望控制、视觉诱导和时间序列扩散变换等技术,继续增强了扩散策略的性能。
-(4): 本文的方法在11个任务上进行了测试,包括4个机器人操纵基准测试。实验结果表明,Diffusion Policy相对于现有的机器人学习方法,表现出明显的优越性和稳定性,平均性能提升了46.9%。
-
-7.Methods:
-本文提出的视觉动作策略学习方法,即Diffusion Policy,包括以下步骤:
-(1) 建立条件去噪扩散过程:将机器人动作表示为一个含有高斯噪声的源的条件随机扩散过程。在该过程中,机器人状态作为源,即输入,通过扩散过程输出机器人的运动动作。为了将其变为条件随机扩散模型,我们加入了代价函数,它在路径积分中作为条件。
-(2) 引入随机Langevin动力学:将学习代价函数的梯度转换为基于随机Langevin动力学的迭代优化问题。该方法可以避免显示计算扩散过程,并且可以满足无导数优化器的要求,使其受益于渐近高斯性质以及全局收敛性质。
-(3) 引入扩散策略增强技术:使用展望控制技术,结合决策网络,对由扩散产生的动作进行调整,从而增强策略的性能。同时,引入视觉诱导以及时间序列扩散变换,来进一步提高扩散策略的表达能力。
-(4) 在11个任务上进行测试:测试结果表明,该方法相对于现有的机器人学习方法,在机器人操纵基准测试中表现出明显的优越性和稳定性,平均性能提升了46.9%。
-7.Conclusion:
-(1):本文研究了机器人视觉动作策略的学习方法,提出了一种新的机器人视觉运动策略模型 - Diffusion Policy,通过引入扩散模型的表达能力,克服了传统方法的局限性,可以表达任意分布并支持高维空间。实验结果表明,该方法在11个任务上均表现出明显的优越性和稳定性,相对于现有机器人学习方法,平均性能提高了46.9%,这一研究意义巨大。
-(2):虽然本文提出了一种新的机器人视觉动作策略学习方法,并在实验中取得了良好的表现,但该方法的优化过程可能比较耗时。此外,该方法的性能受到多种因素的影响,包括演示的质量和数量、机器人的物理能力以及策略架构等,这些因素需在实际应用场景中加以考虑。
-(3):如果让我来推荐,我会给这篇文章打9分。该篇文章提出的Diffusion Policy方法具有较高的可解释性、性能表现良好、实验结果稳定等优点,能够为机器人视觉动作策略学习等领域带来很大的启发与借鉴。唯一的不足可能是方法的优化过程需要投入更多的时间和精力。
-
-## Starchart
-
-[![Star History Chart](https://api.star-history.com/svg?repos=kaixindelele/ChatPaper&type=Date)](https://star-history.com/#kaixindelele/ChatPaper&Date)
-
-## Contributors
-
-
-
-
diff --git a/README.md b/README.md
index 86c8d7f..ebf83b0 100644
--- a/README.md
+++ b/README.md
@@ -4,6 +4,11 @@
+
+💥💥💥7.21 仓库的文件做了一个整理,可能会有些路径和bug,正在修复中。
+并且,我本地更新了全文总结的脚本,以及本地PDF全文翻译的脚本,正在考虑是否开源。
+
+
💥💥💥 7.9号,师弟[red-tie](https://github.com/red-tie)在[auto-draft](https://github.com/CCCBora/auto-draft)的基础上,优化了一款[一键文献综述](https://github.com/kaixindelele/ChatPaper/tree/main/auto_survey)的功能。
适用于大家对具体某个领域快速掌握,并且支持直接生成中文文献调研报告。文件配置简单,欢迎大家使用和反馈!
@@ -16,22 +21,15 @@
-💥💥💥5.10 我们网页版的即将进行更新,现在的总结效果如链接所示:[Sergey Levine近两个月12篇文章总结-ChatPaperDaily6](https://zhuanlan.zhihu.com/p/628338077),总结的内容更加全面且准确,更多的细节,更多的步骤,更多实验结果,且尽可能的降低瞎编.
-
-
💥💥💥**唯一官方网站:**[https://chatpaper.org/](https://chatpaper.org/) ,以及小白教程【ChatPaper网页版使用小白教程-哔哩哔哩】 https://b23.tv/HpDkcBU, 第三方文档:https://chatpaper.readthedocs.io .
-💥💥💥 4.22 为了庆祝ChatPaper获得一万⭐,我们将联合两位同学,推出两个AI辅助文献总结工具,第一个是[auto-draft](https://github.com/CCCBora/auto-draft),AI自动搜集整理出文献总结!第二个是综述文章归纳,后面会上线我们网页版。敬请期待
+💥💥💥 4.22 为了庆祝ChatPaper获得一万⭐,我们将联合两位同学,推出两个AI辅助文献总结工具,第一个是[auto-draft](https://github.com/CCCBora/auto-draft),AI自动搜集整理出文献总结!
💥💥💥 为了降低学术伦理风险,我们为Chat_Reviewer增加了复杂的文字注入,效果如图:[示例图](https://github.com/kaixindelele/ChatPaper/blob/main/images/reviews.jpg) ,希望各位老师同学在使用的时候,一定要注意学术伦理和学术声誉,不要滥用工具。如果谁有更好的方法来限制少数人的不规范使用,欢迎留言,为科研界做一份贡献。
-💥💥💥 最近在开源众筹一个基于OpenReview的微调项目,欢迎大家一起搞事情:[ChatOpenReview](https://github.com/kaixindelele/ChatOpenReview)
-
-
-
🌿🌿🌿使用卡顿?请Fork到自己的Space,轻松使用:
💥💥💥荣胜同学今天发布了一个非常有意思的工作[ChatGenTitle](https://github.com/WangRongsheng/ChatGenTitle),提供摘要生成标题,基于220wArXiv论文的数据微调的结果!
@@ -97,7 +95,6 @@
- 🌟*2023.03.23*: chat_arxiv.py可以从arxiv网站,根据关键词,最近几天,几篇论文,直接爬取最新的领域论文了!解决了之前arxiv包的搜索不准确问题!
- 🌟*2023.03.23*: ChatPaper终于成为完成体了!现在已经有论文总结+论文润色+论文分析与改进建议+论文审稿回复等功能了!
-**增加了ChatReviewer(对论文进行优缺点分析,提出改进建议,⭐️千万别复制生成的内容用于论文评审!一定要注意审稿伦理和责任!该功能仅供大家作为参考!)和ChatResponse(自动提取审稿人的问题并一对一生成回复),该部分的代码均来自于[nishiwen1214](https://github.com/nishiwen1214)的[ChatReviewer](https://github.com/nishiwen1214/ChatReviewer)项目。** 使用技巧请参考这位大佬的项目!
## 开发动机
@@ -239,8 +236,6 @@ python google_scholar_spider.py --kw "deep learning" --nresults 30 --csvpath "./
教程文章:https://zhuanlan.zhihu.com/p/644326031
-
-
---
另外注意,目前这个不支持**综述类**文章。
@@ -341,10 +336,7 @@ python3 app.py
+ 所有的运行结果都被保存在 Docker 的 volumes 中,如果想以服务的形式长期部署,您可以将这些目录映射出来。默认情况下,它们位于 /var/lib/docker/volumes/ 下。您可以进入该目录并查看 chatpaper_log、chatpaper_export、chatpaper_pdf_files 和 chatpaper_response_file 四个相关文件夹中的结果。有关 Docker volumes 的详细解释,请参考此链接:http://docker.baoshu.red/data_management/volume.html。
-
-
-
-
+
## 在线部署
1. 在[Hugging Face](https://huggingface.co/) 创建自己的个人账号并登录;
diff --git a/auto_survey/README.md b/auto_survey/README.md
index a40be0d..7e02052 100644
--- a/auto_survey/README.md
+++ b/auto_survey/README.md
@@ -13,6 +13,10 @@ python_version: 3.10.10
# 部署方法
+首先,下载chatpaper整个项目后,打开项目时,打开的是auto_survey这个文件夹。
+
+因为这两个项目互相独立,如果打开的是chatpaper文件夹,会导致路径不对!
+
1. 安装依赖:
```angular2html
pip install -r requirements.txt
diff --git a/chat_pubmed.py b/chat_pubmed.py
deleted file mode 100644
index 3eed3ac..0000000
--- a/chat_pubmed.py
+++ /dev/null
@@ -1,22 +0,0 @@
-## 正在写PubMed的爬虫,刚爬了一个title,先mark住,欢迎有时间的大佬按照arxiv的逻辑,把pubmed等其他的预印本爬虫写好~
-
-import requests
-from bs4 import BeautifulSoup
-
-def crawl_pubmed_top_ten_papers_by_keywords(keywords):
- url = f"https://pubmed.ncbi.nlm.nih.gov/?term={'+'.join(keywords.split())}"
- response = requests.get(url)
- soup = BeautifulSoup(response.content, "html.parser")
- articles = soup.find_all("article", {"class": "full-docsum"})
- articles.sort(key=lambda x: x.find("span", {"class": "date"}).text.strip() if x.find("span", {"class": "date"}) else "")
- top_ten_articles = articles[:10]
- return top_ten_articles
-
-if __name__ == "__main__":
- keywords = "cancer"
- top_ten_articles = crawl_pubmed_top_ten_papers_by_keywords(keywords)
- for i, article in enumerate(top_ten_articles):
- title = article.find("a", {"class": "docsum-title"}).text.strip()
- authors = article.find("span", {"class": "docsum-authors full-authors"}).text.strip() if article.find("span", {"class": "docsum-authors full-authors"}) else ""
- date = article.find("span", {"class": "date"}).text.strip() if article.find("span", {"class": "date"}) else ""
- print(f"{i+1}. {title}\n {authors}\n {date}\n")
diff --git a/deploy/Private/__pycache__/optimizeOpenAI.cpython-39.pyc b/deploy/Private/__pycache__/optimizeOpenAI.cpython-39.pyc
deleted file mode 100644
index a2d0d88e0ad3462f0e65d316c2780d02e937e751..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001
literal 6742
zcmb7ION<=HdG2@5duJcqC22`+*_6zY#9c~`Vn^6eqR2JH*jZ7goIv9Ujn-7{ZtwPV
z&sO)WxRYK7242j_^bM_zy8Np71Zk$4bLzBdx8D+S2gY5sdD-;QF#L?{TpOVYimqrMx?iO^)=dt
z`kHN1eXX{ozINMIU#IQhYesIj)Gp~X){4sAO1rAcU!Di!xv^Ut)|q{x_XKm=4eku*
zn0unPo3}JpV&w-KE8jQT^Q^+E5483IGwy1w+F-46-Alu6FXG;ZBIxzF@U{}+WjowU
zwzk4f7)0KUoglk)=Uwmmo!ga1SdO;Y(q;J;kGTl4M4(c?Bf><4+2K2V-skNKsQr!2
zTemki2KDV;cIBI^uU^Ue;)A4Zq54XPCOQ37QF#L?{SRbZgOoIq5Ts+M*JKv6nZsOe
z4XqQb=R8)!DqB@yLEQ2hYEk^u0iEwM}Zim%Qsrdamu3hn2jN
z*SCxlUDx(s$!P?}?^eYw<&>CyY#cT62Fk8q%WY89a|d}NcahKKCFD(JAfFFu{)Jo{
zE`nM=(UI5pEb$N75;O1Xf39cehRceV6{f)+tj(4ot(`3ENt^QY(dSsq;KJR*6k_pu
zBI))rFHF5GNxUeDw_E3B8Nz!r=qi?z|()__;KD{Y=`J^4_6z=@ar)&=v}^8d0N+_CnSf
z?_k4I?t|H$taXz3fQvN9Xx_5gUi1iA-niG{y;1AVNJXUey`-}ztq6H*PFg9Cw$%T{
zGX3BwWbHC3jAG<*{}+oyGZzJE21juth$33MAdM3X$fOBf6HlY`P!r$4=kwcZKS;sg
zTBoyilc#&owKX>Sb`r+d$nPkHMsqJp4%gsi4uXuYCE&gr4*1(W9$&w`+B=jb-w)$3
z^Zj#}I9)}i%{e-~6}%<93sf^K-TEKLDyg2L-$74FA1q9)adkXZhs!5By%i#MjXoY4Mj^F@D7<-zyMBm&vj|DRwi3|^mBx$z{K|__&jCdEcne7_Z*GoC`
zX@zI_7cYWh11Y5q()1>AZ453>dH#~1T*kM8ew4LL>2_go!8VtcNFtadSxw@HtYgt+
zqle1032Je~5c#ED?LZex*mXTO$y-rNZeGxav{dZ%vC@Fi@*W!En;0iu%%AZXe-?lZ
znzRK^v6t8&=rU_rYQMxQ=u-6Jcc?_xa%#U80|r4P@W)dF{~kzE2bre!Z1D7S^^c)`
zsH=%*HjoBS*7yc?L#+oIOIiz^#+EVTf_7g&GBYDHhZb7kLr?VkYIx6@28@DIWd_qYzJ6
z=_A?^lXzaAj6-ZG_N077Ji;O`Xox(`BRjWgZOmTLj;#Iv{PMgX>tcO8g5*(fUe%_2
zlAPAHefhDzzrHV-38k(KUQ~hI!}G4_#~oOzLRP0YZbI?s3q0a?u?w4{2>69w4R*+Fu#_)?E#oOS342d1y#u^{UkGoz~y$+ol+HpO9k
zeyblvGyI7+KznAb?Ug4i<{i+cmyl^zL$ATlEh9CNF6v9Dm-Hs$MFa1${=6}G_Wu-)
zwEBo=ElWBD061mA4g6%rqmYZGw1<=`Ya4r%W#}0!i|I;(wO#ThhN>e*pwFE4QB;BM
z!rFEnrZ94D4PEBs_KEQm?WaaamI*Xe_$B75UaFT*3{?g`+pUbs6_l$e6OMM7%W5B4
zM^5hS0#Wao;^$eNHK_Izjm_cP7=7pPABT`s?hKnJWKH78&E520_dm(q;XG@e=xm-T
zJE3;AuxE%*b&aefTL3D<3FWAim%#NRO69!#v7R(~3)4o)uvg_H*Fn;d9bc+wq(#CNAaOX_jUm39}(9Ldrsa-`CM%JZN*r4x6+
zgyMuE%nndEa1Qi6O=3Z|`{)y5(%ldu5wCfl>)ycbXIodk{fM0K!1>|Lw>LN5N37UM
z!Vb_Lg+>*-vp|`4Ye|`!_!ip5?@{No{zN;UpzPu*5nmu;tCxV`7pShl-5DHNO*5eX
z6m|u!pQQnS`~g@8zTo#VSqTAW{RjXSD+lHzvL6tc9VG!vTeZS!|B&XVn5ROGboM?B
z#CEE}IRW3a2iYU)(maU0sEhZAxJ}u_f1QeYl_1?C{0c$uf+nSX*4zpVwW*BN(G7hG
z23yh%qlT86Zv5J+7@s+F74%&E!ZK^Rg+79N1uUcy4U`SE00J&eM7TQr)k9OvE@Z}v
zU9dn~_Fbfum?m4>LR4f&zuOO&MtcAmVdWo@H2csEr|O*Ok8<%l?d;lqUZ5
zw;)r2MYBjQczifHhCj>
zGemTXj@IDvWM$tc5cK5G2m@0GEAc8O-o(0Z;;YUZ$_~(=)~&G8B6ZCICS@lN(VkN5
z)a->X26NMuKpZ@qK|-{v6C|_><72?|NXkQxFvBZA5SGFWCOq0@W*wO^?kGS*JMXM$
z=yfk>E4Zsz(Y^)zw7HQ(A#|dJrO3Gx#{KKpTBNxe|-u
z!nhX&@pd0a22aI-)r~mCT?u9lGVc&~F=5<^`V9Y!A}{9f-zfl%$9NWmQK~o*JmLpI
zjGKg09DKMF;u0>+LJSj}^*dz#bPoq8wVmzYI!@JQBoL%tx8K=;m+;`z)9{0cKUowJ
z;+pzBoOu`>di|K9QU=ik7&lqtXp@S?(Uk`zuRIZi+3g9wgIl8Tpb+U;yko&XhR4-G
z<4;fXeAHe%UA;TPdxRke%S9~=uy@Y4W_T+kbax_|g>#U4B}bvma-Fvh$yK8TP$9cPt4y@W!hWw>Wx
z`jGBKO?4Ks3SUH)OeY}nshff<>i>Uc5OnS@)_QGHQeN~jRj(uaXDYmjY;bwHj^b9S
z13dA#lR?WC8#L-Wl-;6C#VR`ZVo#?&d)8gc%5>IWf;3gv3^Vb0N}w43lH|zGE6EY=
zE+j`cGbE#jIt7qfw#Ljn26hM!GyDo^%*Eo_#Uoa?bn!As#vel=zoKcjOjNi$pP@cS
zmsfGn<-RW~z7L<$kEmSp{r!Frje1<)XGzER)%^&eCj9m-%qHzEpf0e0aslyPq>?fM
z!UW=nl#v7ru%HY;;YQMAkx=GQHr<2iwv!m=ky4^9>6W7qL4gZYPRPpm%rFdV)MFc;
z)-IPyC3negJ_T(48}t#4VSHY@x-{2xn-`mgpm{q;GY^75v1imvh+gziILp_BIcar+
zF#Z>ijCMwRh;nODWHd_QQ6ovk*QoXqWh=NUL 2>NUL
-if errorlevel 9009 (
- echo.
- echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
- echo.installed, then set the SPHINXBUILD environment variable to point
- echo.to the full path of the 'sphinx-build' executable. Alternatively you
- echo.may add the Sphinx directory to PATH.
- echo.
- echo.If you don't have Sphinx installed, grab it from
- echo.https://www.sphinx-doc.org/
- exit /b 1
-)
-
-if "%1" == "" goto help
-
-%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
-goto end
-
-:help
-%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
-
-:end
-popd
+@ECHO OFF
+
+pushd %~dp0
+
+REM Command file for Sphinx documentation
+
+if "%SPHINXBUILD%" == "" (
+ set SPHINXBUILD=sphinx-build
+)
+set SOURCEDIR=source
+set BUILDDIR=build
+
+%SPHINXBUILD% >NUL 2>NUL
+if errorlevel 9009 (
+ echo.
+ echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
+ echo.installed, then set the SPHINXBUILD environment variable to point
+ echo.to the full path of the 'sphinx-build' executable. Alternatively you
+ echo.may add the Sphinx directory to PATH.
+ echo.
+ echo.If you don't have Sphinx installed, grab it from
+ echo.https://www.sphinx-doc.org/
+ exit /b 1
+)
+
+if "%1" == "" goto help
+
+%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
+goto end
+
+:help
+%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
+
+:end
+popd
diff --git a/tagpush.sh b/docker/tagpush.sh
old mode 100755
new mode 100644
similarity index 100%
rename from tagpush.sh
rename to docker/tagpush.sh
diff --git a/get_paper_from_pdf.py b/get_paper_from_pdf.py
deleted file mode 100644
index 2117a58..0000000
--- a/get_paper_from_pdf.py
+++ /dev/null
@@ -1,274 +0,0 @@
-import fitz, io, os
-from PIL import Image
-
-
-class Paper:
- def __init__(self, path, title='', url='', abs='', authers=[]):
- # 初始化函数,根据pdf路径初始化Paper对象
- self.url = url # 文章链接
- self.path = path # pdf路径
- self.section_names = [] # 段落标题
- self.section_texts = {} # 段落内容
- self.abs = abs
- self.title_page = 0
- if title == '':
- self.pdf = fitz.open(self.path) # pdf文档
- self.title = self.get_title()
- self.parse_pdf()
- else:
- self.title = title
- self.authers = authers
- self.roman_num = ["I", "II", 'III', "IV", "V", "VI", "VII", "VIII", "IIX", "IX", "X"]
- self.digit_num = [str(d+1) for d in range(10)]
- self.first_image = ''
-
- def parse_pdf(self):
- self.pdf = fitz.open(self.path) # pdf文档
- self.text_list = [page.get_text() for page in self.pdf]
- self.all_text = ' '.join(self.text_list)
- self.section_page_dict = self._get_all_page_index() # 段落与页码的对应字典
- print("section_page_dict", self.section_page_dict)
- self.section_text_dict = self._get_all_page() # 段落与内容的对应字典
- self.section_text_dict.update({"title": self.title})
- self.section_text_dict.update({"paper_info": self.get_paper_info()})
- self.pdf.close()
-
- def get_paper_info(self):
- first_page_text = self.pdf[self.title_page].get_text()
- if "Abstract" in self.section_text_dict.keys():
- abstract_text = self.section_text_dict['Abstract']
- else:
- abstract_text = self.abs
- first_page_text = first_page_text.replace(abstract_text, "")
- return first_page_text
-
- def get_image_path(self, image_path=''):
- """
- 将PDF中的第一张图保存到image.png里面,存到本地目录,返回文件名称,供gitee读取
- :param filename: 图片所在路径,"C:\\Users\\Administrator\\Desktop\\nwd.pdf"
- :param image_path: 图片提取后的保存路径
- :return:
- """
- # open file
- max_size = 0
- image_list = []
- with fitz.Document(self.path) as my_pdf_file:
- # 遍历所有页面
- for page_number in range(1, len(my_pdf_file) + 1):
- # 查看独立页面
- page = my_pdf_file[page_number - 1]
- # 查看当前页所有图片
- images = page.get_images()
- # 遍历当前页面所有图片
- for image_number, image in enumerate(page.get_images(), start=1):
- # 访问图片xref
- xref_value = image[0]
- # 提取图片信息
- base_image = my_pdf_file.extract_image(xref_value)
- # 访问图片
- image_bytes = base_image["image"]
- # 获取图片扩展名
- ext = base_image["ext"]
- # 加载图片
- image = Image.open(io.BytesIO(image_bytes))
- image_size = image.size[0] * image.size[1]
- if image_size > max_size:
- max_size = image_size
- image_list.append(image)
- for image in image_list:
- image_size = image.size[0] * image.size[1]
- if image_size == max_size:
- image_name = f"image.{ext}"
- im_path = os.path.join(image_path, image_name)
- print("im_path:", im_path)
-
- max_pix = 480
- origin_min_pix = min(image.size[0], image.size[1])
-
- if image.size[0] > image.size[1]:
- min_pix = int(image.size[1] * (max_pix/image.size[0]))
- newsize = (max_pix, min_pix)
- else:
- min_pix = int(image.size[0] * (max_pix/image.size[1]))
- newsize = (min_pix, max_pix)
- image = image.resize(newsize)
-
- image.save(open(im_path, "wb"))
- return im_path, ext
- return None, None
-
- # 定义一个函数,根据字体的大小,识别每个章节名称,并返回一个列表
- def get_chapter_names(self,):
- # # 打开一个pdf文件
- doc = fitz.open(self.path) # pdf文档
- text_list = [page.get_text() for page in doc]
- all_text = ''
- for text in text_list:
- all_text += text
- # # 创建一个空列表,用于存储章节名称
- chapter_names = []
- for line in all_text.split('\n'):
- line_list = line.split(' ')
- if '.' in line:
- point_split_list = line.split('.')
- space_split_list = line.split(' ')
- if 1 < len(space_split_list) < 5:
- if 1 < len(point_split_list) < 5 and (point_split_list[0] in self.roman_num or point_split_list[0] in self.digit_num):
- print("line:", line)
- chapter_names.append(line)
- # 这段代码可能会有新的bug,本意是为了消除"Introduction"的问题的!
- elif 1 < len(point_split_list) < 5:
- print("line:", line)
- chapter_names.append(line)
-
- return chapter_names
-
- def get_title(self):
- doc = self.pdf # 打开pdf文件
- max_font_size = 0 # 初始化最大字体大小为0
- max_string = "" # 初始化最大字体大小对应的字符串为空
- max_font_sizes = [0]
- for page_index, page in enumerate(doc): # 遍历每一页
- text = page.get_text("dict") # 获取页面上的文本信息
- blocks = text["blocks"] # 获取文本块列表
- for block in blocks: # 遍历每个文本块
- if block["type"] == 0 and len(block['lines']): # 如果是文字类型
- if len(block["lines"][0]["spans"]):
- font_size = block["lines"][0]["spans"][0]["size"] # 获取第一行第一段文字的字体大小
- max_font_sizes.append(font_size)
- if font_size > max_font_size: # 如果字体大小大于当前最大值
- max_font_size = font_size # 更新最大值
- max_string = block["lines"][0]["spans"][0]["text"] # 更新最大值对应的字符串
- max_font_sizes.sort()
- print("max_font_sizes", max_font_sizes[-10:])
- cur_title = ''
- for page_index, page in enumerate(doc): # 遍历每一页
- text = page.get_text("dict") # 获取页面上的文本信息
- blocks = text["blocks"] # 获取文本块列表
- for block in blocks: # 遍历每个文本块
- if block["type"] == 0 and len(block['lines']): # 如果是文字类型
- if len(block["lines"][0]["spans"]):
- cur_string = block["lines"][0]["spans"][0]["text"] # 更新最大值对应的字符串
- font_flags = block["lines"][0]["spans"][0]["flags"] # 获取第一行第一段文字的字体特征
- font_size = block["lines"][0]["spans"][0]["size"] # 获取第一行第一段文字的字体大小
- # print(font_size)
- if abs(font_size - max_font_sizes[-1]) < 0.3 or abs(font_size - max_font_sizes[-2]) < 0.3:
- # print("The string is bold.", max_string, "font_size:", font_size, "font_flags:", font_flags)
- if len(cur_string) > 4 and "arXiv" not in cur_string:
- # print("The string is bold.", max_string, "font_size:", font_size, "font_flags:", font_flags)
- if cur_title == '' :
- cur_title += cur_string
- else:
- cur_title += ' ' + cur_string
- self.title_page = page_index
- # break
- title = cur_title.replace('\n', ' ')
- return title
-
-
- def _get_all_page_index(self):
- # 定义需要寻找的章节名称列表
- section_list = ["Abstract",
- 'Introduction', 'Related Work', 'Background',
- "Preliminary", "Problem Formulation",
- 'Methods', 'Methodology', "Method", 'Approach', 'Approaches',
- # exp
- "Materials and Methods", "Experiment Settings",
- 'Experiment', "Experimental Results", "Evaluation", "Experiments",
- "Results", 'Findings', 'Data Analysis',
- "Discussion", "Results and Discussion", "Conclusion",
- 'References']
- # 初始化一个字典来存储找到的章节和它们在文档中出现的页码
- section_page_dict = {}
- # 遍历每一页文档
- for page_index, page in enumerate(self.pdf):
- # 获取当前页面的文本内容
- cur_text = page.get_text()
- # 遍历需要寻找的章节名称列表
- for section_name in section_list:
- # 将章节名称转换成大写形式
- section_name_upper = section_name.upper()
- # 如果当前页面包含"Abstract"这个关键词
- if "Abstract" == section_name and section_name in cur_text:
- # 将"Abstract"和它所在的页码加入字典中
- section_page_dict[section_name] = page_index
- # 如果当前页面包含章节名称,则将章节名称和它所在的页码加入字典中
- else:
- if section_name + '\n' in cur_text:
- section_page_dict[section_name] = page_index
- elif section_name_upper + '\n' in cur_text:
- section_page_dict[section_name] = page_index
- # 返回所有找到的章节名称及它们在文档中出现的页码
- return section_page_dict
-
- def _get_all_page(self):
- """
- 获取PDF文件中每个页面的文本信息,并将文本信息按照章节组织成字典返回。
-
- Returns:
- section_dict (dict): 每个章节的文本信息字典,key为章节名,value为章节文本。
- """
- text = ''
- text_list = []
- section_dict = {}
-
- # 再处理其他章节:
- text_list = [page.get_text() for page in self.pdf]
- for sec_index, sec_name in enumerate(self.section_page_dict):
- print(sec_index, sec_name, self.section_page_dict[sec_name])
- if sec_index <= 0 and self.abs:
- continue
- else:
- # 直接考虑后面的内容:
- start_page = self.section_page_dict[sec_name]
- if sec_index < len(list(self.section_page_dict.keys()))-1:
- end_page = self.section_page_dict[list(self.section_page_dict.keys())[sec_index+1]]
- else:
- end_page = len(text_list)
- print("start_page, end_page:", start_page, end_page)
- cur_sec_text = ''
- if end_page - start_page == 0:
- if sec_index < len(list(self.section_page_dict.keys()))-1:
- next_sec = list(self.section_page_dict.keys())[sec_index+1]
- if text_list[start_page].find(sec_name) == -1:
- start_i = text_list[start_page].find(sec_name.upper())
- else:
- start_i = text_list[start_page].find(sec_name)
- if text_list[start_page].find(next_sec) == -1:
- end_i = text_list[start_page].find(next_sec.upper())
- else:
- end_i = text_list[start_page].find(next_sec)
- cur_sec_text += text_list[start_page][start_i:end_i]
- else:
- for page_i in range(start_page, end_page):
-# print("page_i:", page_i)
- if page_i == start_page:
- if text_list[start_page].find(sec_name) == -1:
- start_i = text_list[start_page].find(sec_name.upper())
- else:
- start_i = text_list[start_page].find(sec_name)
- cur_sec_text += text_list[page_i][start_i:]
- elif page_i < end_page:
- cur_sec_text += text_list[page_i]
- elif page_i == end_page:
- if sec_index < len(list(self.section_page_dict.keys()))-1:
- next_sec = list(self.section_page_dict.keys())[sec_index+1]
- if text_list[start_page].find(next_sec) == -1:
- end_i = text_list[start_page].find(next_sec.upper())
- else:
- end_i = text_list[start_page].find(next_sec)
- cur_sec_text += text_list[page_i][:end_i]
- section_dict[sec_name] = cur_sec_text.replace('-\n', '').replace('\n', ' ')
- return section_dict
-
-def main():
- path = r'demo.pdf'
- paper = Paper(path=path)
- paper.parse_pdf()
- for key, value in paper.section_text_dict.items():
- print(key, value)
- print("*"*40)
-
-
-if __name__ == '__main__':
- main()
diff --git a/ChatPaper.ipynb b/others/ChatPaper.ipynb
similarity index 100%
rename from ChatPaper.ipynb
rename to others/ChatPaper.ipynb
diff --git a/chat_arxiv_maomao.py b/others/chat_arxiv_maomao.py
similarity index 100%
rename from chat_arxiv_maomao.py
rename to others/chat_arxiv_maomao.py
diff --git a/google_scholar_spider.py b/others/google_scholar_spider.py
similarity index 100%
rename from google_scholar_spider.py
rename to others/google_scholar_spider.py
diff --git a/others/machine_learning.csv b/others/machine_learning.csv
new file mode 100644
index 0000000..d9fab5d
--- /dev/null
+++ b/others/machine_learning.csv
@@ -0,0 +1,51 @@
+Rank,Author,Title,Citations,Year,Publisher,Venue,Source,cit/year
+440," Bishop, NM Nasrabadi",Pattern recognition and machine learning,65423,2006, Springer,,https://link.springer.com/book/9780387310732,3635
+410, Murphy,Machine learning: a probabilistic perspective,13922,2012, books.google.com,,https://books.google.com/books?hl=en&lr=&id=RC43AgAAQBAJ&oi=fnd&pg=PR7&dq=machine+learning&ots=umou8zRxZ6&sig=Yt4k1SbH83Yoaefkx6C0lzerP6c,1160
+20," Jordan, TM Mitchell","Machine learning: Trends, perspectives, and prospects",6373,2015, science.org, Science,https://www.science.org/doi/abs/10.1126/science.aaa8415,708
+240,Shale,Understanding machine learning: From theory to algorithms,6371,2014, books.google.com,,https://books.google.com/books?hl=en&lr=&id=Hf6QAwAAQBAJ&oi=fnd&pg=PR15&dq=machine+learning&ots=2IyfLknQK-&sig=0FaXB-Y1uBej-f0TGukldQjCjqQ,637
+200,"Mohri, A Rostamizadeh, A Talwalkar",Foundations of machine learning,5377,2018, books.google.com,,https://books.google.com/books?hl=en&lr=&id=dWB9DwAAQBAJ&oi=fnd&pg=PR5&dq=machine+learning&ots=AywPTRw5j5&sig=gDH_EE9DckSxR1-ldLaeBzpnP2c,896
+480, King,Dlib-ml: A machine learning toolkit,3556,2009, jmlr.org, The Journal of Machine Learning Research,https://www.jmlr.org/papers/volume10/king09a/king09a.pdf,237
+460," Butler, DW Davies, H Cartwright, O Isayev, A Walsh",Machine learning for molecular and materials science,2542,2018, nature.com, Nature,https://www.nature.com/articles/s41586-018-0337-2,424
+380, Dietterich,Machine-learning research,2121,1997, ojs.aaai.org, AI magazine,https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1324,79
+130,"Sammut, GI Webb",Encyclopedia of machine learning,1877,2011, books.google.com,,https://books.google.com/books?hl=en&lr=&id=i8hQhp1a62UC&oi=fnd&pg=PT29&dq=machine+learning&ots=91r7wtiH6Q&sig=AHa5z1TSiO_oCiGOL7GKIcbmzLc,144
+340," Liakos, P Busato, D Moshou, S Pearson, D Bochtis",Machine learning in agriculture: A review,1831,2018, mdpi.com, Sensors,https://www.mdpi.com/1424-8220/18/8/2674,305
+280,"Carleo, I Cirac, K Cranmer, L Daudet, M Schuld…",Machine learning and the physical sciences,1655,2019, APS, Reviews of Modern …,https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.045002,331
+60,"Wang, Z Lei, X Zhang, B Zhou, J Peng",Machine learning basics,1619,2016, whdeng.cn, Deep learning,http://whdeng.cn/Teaching/PPT_01_Machine%20learning%20Basics.pdf,202
+10, Zhou,Machine learning,1613,2021, books.google.com,,https://books.google.com/books?hl=en&lr=&id=ctM-EAAAQBAJ&oi=fnd&pg=PR6&dq=machine+learning&ots=oZRhS3WzYs&sig=eYf8c9ZHOUx0vYceVoUcNWlnUWE,538
+30,Mahesh,Machine learning algorithms-a review,1455,2020, researchgate.net, International Journal of Science and Research (IJSR) …,https://www.researchgate.net/profile/Batta-Mahesh/publication/344717762_Machine_Learning_Algorithms_-A_Review/links/5f8b2365299bf1b53e2d243a/Machine-Learning-Algorithms-A-Review.pdf?eid=5082902844932096,364
+310,Raschka,Python machine learning,1369,2015, books.google.com,,https://books.google.com/books?hl=en&lr=&id=GOVOCwAAQBAJ&oi=fnd&pg=PP1&dq=machine+learning&ots=NdgvGcWXUE&sig=zcVIzg9Fr4KP4eRtU0FRKjO75CI,152
+140,Harrington,Machine learning in action,1205,2012, books.google.com,,https://books.google.com/books?hl=en&lr=&id=XTozEAAAQBAJ&oi=fnd&pg=PT18&dq=machine+learning&ots=pw4cI3NRbp&sig=BJiIhWUSg-CH6QVNLCTuqB8ksXA,100
+260,Langley,Elements of machine learning,942,1996, books.google.com,,https://books.google.com/books?hl=en&lr=&id=TNg5qVoqRtUC&oi=fnd&pg=PR9&dq=machine+learning&ots=Q4tmWtv1Kj&sig=uD85WO3spUWAJLb5uNXTgkru0HY,34
+150,"Sra, S Nowozin, SJ Wright",Optimization for machine learning,890,2012, books.google.com,,https://books.google.com/books?hl=en&lr=&id=JPQx7s2L1A8C&oi=fnd&pg=PR5&dq=machine+learning&ots=vel6ugncBg&sig=G8Jv0hOnac1oGD8BLAupTCG_IxU,74
+300, Mitchell,The discipline of machine learning,885,2006, cs.cmu.edu,,https://www.cs.cmu.edu/afs/cs/usr/mitchell/ftp/pubs/MachineLearningTR.pdf,49
+220, Ayodele,Types of machine learning algorithms,867,2010, books.google.com, New advances in machine learning,https://books.google.com/books?hl=en&lr=&id=XAqhDwAAQBAJ&oi=fnd&pg=PA19&dq=machine+learning&ots=r2Oi6UDmIk&sig=vyuLuQXQG82JB1PKGDbfNPwjPAA,62
+40,"El Naqa, MJ Murphy",What is machine learning?,861,2015, Springer,,https://link.springer.com/chapter/10.1007/978-3-319-18305-3_1,96
+190,Burkov,The hundred-page machine learning book,781,0,papers.com,,https://order-papers.com/sites/default/files/tmp/webform/order_download/pdf-the-hundred-page-machine-learning-book-andriy-burkov-pdf-download-free-book-d835289.pdf,0
+160,Athey,The impact of machine learning on economics,750,2018, nber.org, The economics of artificial intelligence: An agenda,https://www.nber.org/system/files/chapters/c14009/c14009.pdf,125
+350,"Janiesch, P Zschech, K Heinrich",Machine learning and deep learning,750,2021, Springer, Electronic Markets,https://link.springer.com/article/10.1007/s12525-021-00475-2,250
+370," Tarca, VJ Carey, X Chen, R Romero…",Machine learning and its applications to biology,689,2007, journals.plos.org, PLoS computational …,https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030116,41
+230,Surden,Machine learning and law,650,2014, HeinOnline, Wash. L. Rev.,https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/washlr89§ion=7,65
+470,Ray,A quick review of machine learning algorithms,606,2019, ieeexplore.ieee.org, 2019 International conference on machine learning …,https://ieeexplore.ieee.org/abstract/document/8862451/,121
+360,"Mohammed, MB Khan, EBM Bashier",Machine learning: algorithms and applications,578,2016, books.google.com,,https://books.google.com/books?hl=en&lr=&id=X8LBDAAAQBAJ&oi=fnd&pg=PP1&dq=machine+learning&ots=qQHqwrKdxD&sig=WLSpodFeOX3K5XdZ39bXnsYztuk,72
+180,Alpaydin,Machine learning: the new AI,565,2016, books.google.com,,https://books.google.com/books?hl=en&lr=&id=ylE4DQAAQBAJ&oi=fnd&pg=PR5&dq=machine+learning&ots=S7kG0qqCTQ&sig=bqxKlF7oZPDtGuCjRiuRwnC30xM,71
+120,Bonaccorso,Machine learning algorithms,549,2017, books.google.com,,https://books.google.com/books?hl=en&lr=&id=_-ZDDwAAQBAJ&oi=fnd&pg=PP1&dq=machine+learning&ots=epmyw0IG1J&sig=P0kb9Im4Ktz1Um7h7tFy8-8_LIA,78
+110," Shavlik, TG Dietterich",Readings in machine learning,536,1990, books.google.com,,https://books.google.com/books?hl=en&lr=&id=UgC33U2KMCsC&oi=fnd&pg=PA1&dq=machine+learning&ots=Thodeg8Lma&sig=FvnUKCsN9oMubqxbsNhc0qJfURk,16
+390,"Alzubi, A Nayyar, A Kumar",Machine learning from theory to algorithms: an overview,482,2018, iopscience.iop.org, Journal of physics: conference …,https://iopscience.iop.org/article/10.1088/1742-6596/1142/1/012012/meta,80
+90," Greener, SM Kandathil, L Moffat…",A guide to machine learning for biologists,434,2022, nature.com, Nature Reviews Molecular …,https://www.nature.com/articles/s41580-021-00407-0,217
+290,"Wei, X Chu, XY Sun, K Xu, HX Deng, J Chen, Z Wei…",Machine learning in materials science,383,2019, Wiley Online Library, InfoMat,https://onlinelibrary.wiley.com/doi/abs/10.1002/inf2.12028,77
+330,Dangeti,Statistics for machine learning,363,2017, books.google.com,,https://books.google.com/books?hl=en&lr=&id=C-dDDwAAQBAJ&oi=fnd&pg=PP1&dq=machine+learning&ots=j2brZqt4Xp&sig=xr-iInyZ0efVuBWnLf70GbaWpbU,52
+170,Wagstaff,Machine learning that matters,347,2012, arxiv.org, arXiv preprint arXiv:1206.4656,https://arxiv.org/abs/1206.4656,29
+80, Mitchell,Machine learning,334,1997, ds.amu.edu.et,,https://ds.amu.edu.et/xmlui/bitstream/handle/123456789/14637/Machine_Learning%20-%20421%20pages.pdf?sequence=1&isAllowed=y,12
+270,"Ribeiro, K Grolinger…",Mlaas: Machine learning as a service,328,2015, ieeexplore.ieee.org, … on machine learning and …,https://ieeexplore.ieee.org/abstract/document/7424435/,36
+70,"Bi, KE Goodman, J Kaminsky…",What is machine learning? A primer for the epidemiologist,313,2019, academic.oup.com, American journal of …,https://academic.oup.com/aje/article-abstract/188/12/2222/5567515,63
+100,"Provost, R Kohavi",On applied research in machine learning,296,1998, ai.stanford.edu,,https://ai.stanford.edu/~ronnyk/editorial.pdf,11
+420, Bishop,Model-based machine learning,252,2013, royalsocietypublishing.org, … Transactions of the Royal Society A …,https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2012.0222,23
+490,"Vartak, H Subramanyam, WE Lee…",ModelDB: a system for machine learning model management,221,2016, dl.acm.org, Proceedings of the …,https://dl.acm.org/doi/abs/10.1145/2939502.2939516,28
+50,Alpaydin,Machine learning,216,2021, books.google.com,,https://books.google.com/books?hl=en&lr=&id=2nQJEAAAQBAJ&oi=fnd&pg=PR7&dq=machine+learning&ots=fH62O5ZGhs&sig=FrqykiQWufPDLZbZp0Gc8WqyxyU,72
+320,"Wang, C Ma, L Zhou",A brief review of machine learning and its application,170,2009, ieeexplore.ieee.org, 2009 international conference on …,https://ieeexplore.ieee.org/abstract/document/5362936/,11
+500,Daumé,A course in machine learning,169,2017, academia.edu,,https://www.academia.edu/download/37276995/Course_in_Machine_Learning.pdf,24
+210,Gollapudi,Practical machine learning,162,2016, books.google.com,,https://books.google.com/books?hl=en&lr=&id=WmsdDAAAQBAJ&oi=fnd&pg=PP1&dq=machine+learning&ots=1AD1xuPo5S&sig=o_dmiuADBZd5Gj38Tsv0to44s7k,20
+430," Wilson, NV Sahinidis",The ALAMO approach to machine learning,160,2017, Elsevier, Computers & Chemical Engineering,https://www.sciencedirect.com/science/article/pii/S0098135417300662,23
+250, Zhou,Learnware: on the future of machine learning.,132,2016, lamda.nju.edu.cn, Frontiers Comput. Sci.,https://www.lamda.nju.edu.cn/publication/fcs16learnware.pdf,16
+400,"Paluszek, S Thomas",MATLAB machine learning,127,2016, books.google.com,,https://books.google.com/books?hl=en&lr=&id=3kXODQAAQBAJ&oi=fnd&pg=PR6&dq=machine+learning&ots=ZMPqTJbhkK&sig=QC7mMx0eNpIiipWtXZsT79pTrBQ,16
+450,"Graves, V Nagisetty, V Ganesh",Amnesiac machine learning,59,2021, ojs.aaai.org, … of the AAAI Conference on Artificial …,https://ojs.aaai.org/index.php/AAAI/article/view/17371,20
diff --git a/project_analysis.md b/others/project_analysis.md
similarity index 100%
rename from project_analysis.md
rename to others/project_analysis.md