-
Notifications
You must be signed in to change notification settings - Fork 45
/
monitor-data.c
634 lines (587 loc) · 21.1 KB
/
monitor-data.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
// Data plane sections of the multicast monitor program
// Moved out of monitor.c when it was getting way too big
// Copyright Aug 2024 Phil Karn, KA9Q
#define _GNU_SOURCE 1
#include <assert.h>
#include <errno.h>
#include <pthread.h>
#include <sys/stat.h>
#include <opus/opus.h>
#include <portaudio.h>
#include <ncurses.h>
#include <locale.h>
#include <signal.h>
#include <getopt.h>
#include <iniparser/iniparser.h>
#if __linux__
#include <bsd/string.h>
#include <alsa/asoundlib.h>
#else
#include <string.h>
#endif
#include <sysexits.h>
#include <poll.h>
#include "conf.h"
#include "config.h"
#include "misc.h"
#include "multicast.h"
#include "radio.h"
#include "iir.h"
#include "morse.h"
#include "status.h"
#include "monitor.h"
int Position; // auto-position streams
int Invalids;
// All the tones from various groups, including special NATO 150 Hz tone
float PL_tones[] = {
67.0, 69.3, 71.9, 74.4, 77.0, 79.7, 82.5, 85.4, 88.5, 91.5,
94.8, 97.4, 100.0, 103.5, 107.2, 110.9, 114.8, 118.8, 123.0, 127.3,
131.8, 136.5, 141.3, 146.2, 150.0, 151.4, 156.7, 159.8, 162.2, 165.5,
167.9, 171.3, 173.8, 177.3, 179.9, 183.5, 186.2, 189.9, 192.8, 196.6,
199.5, 203.5, 206.5, 210.7, 213.8, 218.1, 221.3, 225.7, 229.1, 233.6,
237.1, 241.8, 245.5, 250.3, 254.1
};
static float make_position(int x);
// Receive from data multicast streams, multiplex to decoder threads
void *dataproc(void *arg){
char const *mcast_address_text = (char *)arg;
{
char name[100];
snprintf(name,sizeof(name),"mon %s",mcast_address_text);
pthread_setname(name);
}
int input_fd;
{
char iface[1024];
struct sockaddr sock;
resolve_mcast(mcast_address_text,&sock,DEFAULT_RTP_PORT,iface,sizeof(iface),0);
input_fd = listen_mcast(&sock,iface);
}
if(input_fd == -1)
pthread_exit(NULL);
struct packet *pkt = NULL;
realtime();
// Main loop begins here
while(!Terminate){
// Need a new packet buffer?
if(!pkt)
pkt = malloc(sizeof(*pkt));
// Zero these out to catch any uninitialized derefs
pkt->next = NULL;
pkt->data = NULL;
pkt->len = 0;
struct sockaddr_storage sender;
socklen_t socksize = sizeof(sender);
int size = recvfrom(input_fd,&pkt->content,sizeof(pkt->content),0,(struct sockaddr *)&sender,&socksize);
if(size == -1){
if(errno != EINTR){ // Happens routinely, e.g., when window resized
perror("recvfrom");
usleep(1000);
}
continue; // Reuse current buffer
}
if(size <= RTP_MIN_SIZE)
continue; // Must be big enough for RTP header and at least some data
// Convert RTP header to host format
uint8_t const *dp = ntoh_rtp(&pkt->rtp,pkt->content);
pkt->data = dp;
pkt->len = size - (dp - pkt->content);
if(pkt->rtp.pad){
pkt->len -= dp[pkt->len-1];
pkt->rtp.pad = 0;
}
if(pkt->len <= 0)
continue; // Used to be an assert, but would be triggered by bogus packets
// Find appropriate session; create new one if necessary
struct session *sp = lookup_or_create_session(&sender,pkt->rtp.ssrc);
if(!sp){
fprintf(stderr,"No room!!\n");
continue;
}
if(!sp->init){
// status reception doesn't write below this point
if(Auto_position)
sp->pan = make_position(Position++);
else
sp->pan = 0; // center by default
sp->gain = powf(10.,0.05 * Gain); // Start with global default
sp->notch_enable = Notch;
sp->muted = Start_muted;
sp->dest = mcast_address_text;
sp->last_timestamp = pkt->rtp.timestamp;
sp->rtp_state.seq = pkt->rtp.seq;
sp->reset = true;
sp->init = true;
if(pthread_create(&sp->task,NULL,decode_task,sp) == -1){
perror("pthread_create");
close_session(&sp);
continue;
}
}
// Insert onto queue sorted by sequence number, wake up thread
struct packet *q_prev = NULL;
struct packet *qe = NULL;
int qlen = 0;
const int maxq = 500; // 10 seconds
pthread_mutex_lock(&sp->qmutex);
for(qe = sp->queue;
qe != NULL && qlen < maxq && pkt->rtp.seq >= qe->rtp.seq;
q_prev = qe,qe = qe->next,qlen++)
;
if(qlen >= maxq){
// Queue has grown huge, blow it away. Seems to happen when a macos laptop is asleep
struct packet *qnext;
for(qe = sp->queue; qe != NULL; qe = qnext){
qnext = qe->next;
FREE(qe);
}
// queue now empty, can put new packet at head
}
if(qe)
sp->reseqs++; // Not the last on the list
pkt->next = qe;
if(q_prev)
q_prev->next = pkt;
else
sp->queue = pkt; // Front of list
pkt = NULL; // force new packet to be allocated
long long t = gps_time_ns();
if(t - sp->last_active > BILLION){
// Transition from idle to active
sp->last_start = t;
}
sp->last_active = t;
// wake up decoder thread
pthread_cond_signal(&sp->qcond);
pthread_mutex_unlock(&sp->qmutex);
}
return NULL;
}
void decode_task_cleanup(void *arg){
struct session *sp = (struct session *)arg;
assert(sp);
pthread_mutex_destroy(&sp->qmutex);
pthread_cond_destroy(&sp->qcond);
if(sp->opus){
opus_decoder_destroy(sp->opus);
sp->opus = NULL;
}
struct packet *pkt_next = NULL;
for(struct packet *pkt = sp->queue; pkt != NULL; pkt = pkt_next){
pkt_next = pkt->next;
FREE(pkt);
}
struct frontend * const frontend = &sp->frontend;
FREE(frontend->description);
// Just in case anything was allocated for these arrays
struct channel * const chan = &sp->chan;
FREE(chan->filter.energies);
FREE(chan->spectrum.bin_data);
FREE(chan->status.command);
}
// Per-session thread to decode incoming RTP packets
// Not needed for PCM, but Opus can be slow
void *decode_task(void *arg){
struct session *sp = (struct session *)arg;
assert(sp);
{
char name[100];
snprintf(name,sizeof(name),"dec %u",sp->ssrc);
pthread_setname(name);
}
pthread_cleanup_push(decode_task_cleanup,arg); // called on termination
int consec_lates = 0;
int consec_earlies = 0;
float *bounce = NULL;
// Main loop; run until asked to quit
while(!sp->terminate && !Terminate){
struct packet *pkt = NULL;
// Wait for packet to appear on queue
pthread_mutex_lock(&sp->qmutex);
while(!sp->queue){
int64_t const increment = 100000000; // 100 ms
// pthread_cond_timedwait requires UTC clock time! Undefined behavior around a leap second...
struct timespec ts;
ns2ts(&ts,utc_time_ns() + increment);
int r = pthread_cond_timedwait(&sp->qcond,&sp->qmutex,&ts); // Wait 100 ms max so we pick up terminates
if(r != 0){
if(r == EINVAL)
Invalids++;
pthread_mutex_unlock(&sp->qmutex);
goto endloop;// restart loop, checking terminate flags
}
}
// Peek at first packet on queue; is it in sequence?
if(sp->queue->rtp.seq != sp->rtp_state.seq){
// No. If we've got plenty in the playout buffer, sleep to allow some packet resequencing in the input thread.
// Strictly speaking, we will resequence ourselves below with the RTP timestamp. But that works properly only with stateless
// formats like PCM. Opus is stateful, so it's better to resequence input packets (using the RTP sequence #) when possible.
float queue = (float)modsub(sp->wptr,Rptr,BUFFERSIZE) / DAC_samprate;
if(queue > Latency + 0.1){ // 100 ms for scheduling latency?
pthread_mutex_unlock(&sp->qmutex);
struct timespec ss;
ns2ts(&ss,(int64_t)(1e9 * (queue - (Latency + 0.1))));
nanosleep(&ss,NULL);
goto endloop;
}
// else the playout queue is close to draining, accept out of sequence packet anyway
}
pkt = sp->queue;
sp->queue = pkt->next;
pkt->next = NULL;
pthread_mutex_unlock(&sp->qmutex);
sp->packets++; // Count all packets, regardless of type
if((int16_t)(pkt->rtp.seq - sp->rtp_state.seq) > 0){ // Doesn't really handle resequencing
if(!pkt->rtp.marker){
sp->rtp_state.drops++; // Avoid spurious drops when session is recreated after silence
Last_error_time = gps_time_ns();
}
if(sp->opus)
opus_decoder_ctl(sp->opus,OPUS_RESET_STATE); // Reset decoder when there's a jump
}
sp->rtp_state.seq = pkt->rtp.seq + 1; // Expect the next seq # next time
if(!sp->muted && pkt->rtp.marker){
// beginning of talk spurt, resync
reset_session(sp,pkt->rtp.timestamp); // Updates sp->wptr
}
if(pkt->rtp.type >= 0 && pkt->rtp.type < 128)
sp->type = pkt->rtp.type; // Save only if valid
enum encoding const encoding = sp->pt_table[sp->type].encoding;
if(encoding == NO_ENCODING || encoding == AX25)
goto endloop;
int upsample;
// The Opus decoder is always forced to stereo output because the input stream can switch at any time
// (e.g., I/Q vs envelope) without changing the payload type, so there could be a glitch
// before the channel count in the status message catches up with us and we can initialize a new decoder
if(encoding == OPUS){
sp->samprate = DAC_samprate;
sp->channels = 2;
upsample = 1;
if(!sp->opus){
// This should happen only once on a stream
// Always decode Opus to DAC rate of 48 kHz, stereo
int error;
sp->opus = opus_decoder_create(sp->samprate,sp->channels,&error);
if(error != OPUS_OK)
fprintf(stderr,"opus_decoder_create error %d\n",error);
assert(sp->opus);
// Init PL tone detectors
for(int j=0; j < N_tones; j++)
init_goertzel(&sp->tone_detector[j],PL_tones[j]/(float)sp->samprate);
sp->notch_tone = 0;
}
int const r1 = opus_packet_get_nb_samples(pkt->data,pkt->len,sp->samprate);
if(r1 == OPUS_INVALID_PACKET || r1 == OPUS_BAD_ARG)
goto endloop;
assert(r1 >= 0);
sp->frame_size = r1;
int const r2 = opus_packet_get_bandwidth(pkt->data);
if(r2 == OPUS_INVALID_PACKET || r2 == OPUS_BAD_ARG)
goto endloop;
switch(r2){
case OPUS_BANDWIDTH_NARROWBAND:
sp->bandwidth = 4;
break;
case OPUS_BANDWIDTH_MEDIUMBAND:
sp->bandwidth = 6;
break;
case OPUS_BANDWIDTH_WIDEBAND:
sp->bandwidth = 8;
break;
case OPUS_BANDWIDTH_SUPERWIDEBAND:
sp->bandwidth = 12;
break;
default:
case OPUS_BANDWIDTH_FULLBAND:
sp->bandwidth = 20;
break;
}
size_t const bounce_size = sizeof(*bounce) * sp->frame_size * sp->channels;
assert(bounce == NULL); // detect possible memory leaks
bounce = malloc(bounce_size);
int const samples = opus_decode_float(sp->opus,pkt->data,pkt->len,bounce,bounce_size,0);
if(samples != sp->frame_size){
fprintf(stderr,"samples %d frame-size %d\n",samples,sp->frame_size);
goto endloop;
}
} else { // PCM
sp->channels = sp->pt_table[sp->type].channels;
int samprate = sp->pt_table[sp->type].samprate;
if(samprate <= 0 || sp->channels <= 0 || sp->channels > 2)
goto endloop;
if(samprate != sp->samprate){
// Reinit tone detectors whenever sample rate changes
sp->samprate = samprate;
for(int j=0; j < N_tones; j++)
init_goertzel(&sp->tone_detector[j],PL_tones[j]/(float)sp->samprate);
sp->notch_tone = 0; // force it to be re-detected at new sample rate
sp->bandwidth = samprate / 2000; // in kHz allowing for Nyquist, using actual input sample rate for Opus
}
// Upsample (PCM only) lower samprates to output rate
// (should be cleaner; what about decimation?)
upsample = DAC_samprate / sp->samprate;
// decode PCM into bounce buffer
switch(encoding){
case S16LE:
case S16BE:
sp->frame_size = pkt->len / (sizeof(int16_t) * sp->channels); // mono/stereo samples in frame
if(sp->frame_size <= 0)
goto endloop;
assert(bounce == NULL);
bounce = malloc(sizeof(*bounce) * sp->frame_size * sp->channels);
if(encoding == S16BE){
int16_t const * const data = (int16_t *)&pkt->data[0];
for(int i=0; i < sp->channels * sp->frame_size; i++)
bounce[i] = SCALE16 * (int16_t)ntohs(data[i]); // Cast is necessary
} else {
int16_t const * const data = (int16_t *)&pkt->data[0];
for(int i=0; i < sp->channels * sp->frame_size; i++)
bounce[i] = SCALE16 * data[i];
}
break;
case F32LE:
sp->frame_size = pkt->len / (sizeof(float) * sp->channels); // mono/stereo samples in frame
if(sp->frame_size <= 0) // Check here because it might truncate to zero
goto endloop;
assert(bounce == NULL);
bounce = malloc(sizeof(*bounce) * sp->frame_size * sp->channels);
{
float const * const data = (float *)&pkt->data[0];
for(int i=0; i < sp->channels * sp->frame_size; i++)
bounce[i] = data[i];
}
break;
#ifdef FLOAT16
case F16LE: // 16-bit floats
sp->frame_size = pkt->len / (sizeof(_Float16) * sp->channels); // mono/stereo samples in frame
if(sp->frame_size <= 0) // Check here because it might truncate to zero
goto endloop;
assert(bounce == NULL);
bounce = malloc(sizeof(*bounce) * sp->frame_size * sp->channels);
{
_Float16 const * const data = (_Float16 *)&pkt->data[0];
for(int i=0; i < sp->channels * sp->frame_size; i++)
bounce[i] = data[i];
}
break;
#endif
default:
goto endloop; // Unknown, ignore
} // end of PCM switch
}
// Run PL tone decoders
// Disable if display isn't active and autonotching is off
// Fed audio that might be discontinuous or out of sequence, but it's a pain to fix
if(sp->notch_enable) {
for(int i=0; i < sp->frame_size; i++){
float s;
if(sp->channels == 2)
s = 0.5 * (bounce[2*i] + bounce[2*i+1]); // Mono sum
else // sp->channels == 1
s = bounce[i];
for(int j = 0; j < N_tones; j++)
update_goertzel(&sp->tone_detector[j],s);
}
sp->tone_samples += sp->frame_size;
if(sp->tone_samples >= Tone_period * sp->samprate){
sp->tone_samples = 0;
int pl_tone_index = -1;
float strongest_tone_energy = 0;
float total_energy = 0;
for(int j=0; j < N_tones; j++){
float energy = cnrmf(output_goertzel(&sp->tone_detector[j]));
total_energy += energy;
reset_goertzel(&sp->tone_detector[j]);
if(energy > strongest_tone_energy){
strongest_tone_energy = energy;
pl_tone_index = j;
}
}
if(2*strongest_tone_energy > total_energy && pl_tone_index >= 0){
// Tone must be > -3dB relative to total of all tones
sp->current_tone = PL_tones[pl_tone_index];
} else
sp->current_tone = 0;
} // End of tone observation period
if(sp->current_tone != 0 && sp->notch_tone != sp->current_tone){
// New or changed tone
sp->notch_tone = sp->current_tone;
setIIRnotch(&sp->iir_right,sp->current_tone/sp->samprate);
setIIRnotch(&sp->iir_left,sp->current_tone/sp->samprate);
}
} // sp->notch_enable
// Count samples and frames and advance write pointer even when muted
sp->tot_active += (float)sp->frame_size / sp->samprate;
sp->active += (float)sp->frame_size / sp->samprate;
kick_output(); // Ensure Rptr is current
// Sequence number processing and write pointer updating
if(sp->reset){
reset_session(sp,pkt->rtp.timestamp); // Resets sp->wptr and last_timestamp
} else if(modsub(sp->wptr,Rptr,BUFFERSIZE) < 0){
sp->lates++;
if(++consec_lates < 3 || Constant_delay)
goto endloop;
// 3 or more consecutive lates triggers a reset, unless constant delay is selected
reset_session(sp,pkt->rtp.timestamp);
} else if(modsub(sp->wptr,Rptr,BUFFERSIZE) > BUFFERSIZE/4){
sp->earlies++;
if(++consec_earlies < 3)
goto endloop;
reset_session(sp,pkt->rtp.timestamp);
}
consec_lates = 0;
consec_earlies = 0;
// Normal packet, relative adjustment to write pointer
// Can difference in timestamps be negative? Cast it anyway
// Opus always counts timestamps at 48 kHz so this breaks when DAC_samprate is not 48 kHz
// For opus, sp->wptr += (int32_t)(pkt->rtp.timestamp - sp->last_timestamp) * DAC_samprate / 48000;
sp->wptr += (int32_t)(pkt->rtp.timestamp - sp->last_timestamp) * upsample;
sp->wptr &= (BUFFERSIZE-1);
sp->last_timestamp = pkt->rtp.timestamp;
vote();
// Skip output if session is muted
// Thumping artifacts during vote switching seem worse if we bail out here, so we keep the tone notch filters going
// on out-voted channels
if(sp->muted)
goto endloop; // No more to do with this frame
if(Channels == 2){
/* Compute gains and delays for stereo imaging
Extreme gain differences can make the source sound like it's inside an ear
This can be uncomfortable in good headphones with extreme panning
-6dB for each channel in the center
when full to one side or the other, that channel is +6 dB and the other is -inf dB
*/
float const left_gain = sp->gain * (1 - sp->pan)/2;
float const right_gain = sp->gain * (1 + sp->pan)/2;
/* Delay less favored channel 0 - 1.5 ms max (determined
empirically) This is really what drives source localization
in humans. The effect is so dramatic even with equal levels
you have to remove one earphone to convince yourself that the
levels really are the same!
*/
int const left_delay = (sp->pan > 0) ? round(sp->pan * .0015 * DAC_samprate) : 0; // Delay left channel
int const right_delay = (sp->pan < 0) ? round(-sp->pan * .0015 * DAC_samprate) : 0; // Delay right channel
assert(left_delay >= 0 && right_delay >= 0);
// Mix bounce buffer into output buffer read by portaudio callback
// Simplified by mirror buffer wrap
int left_index = 2 * (sp->wptr + left_delay);
int right_index = 2 * (sp->wptr + right_delay) + 1;
for(int i=0; i < sp->frame_size; i++){
float left,right;
if(sp->channels == 1){
// Mono input, put on both channels
left = bounce[i];
if(sp->notch_enable && sp->notch_tone > 0)
left = applyIIR(&sp->iir_left,left);
right = left;
} else {
// stereo input
left = bounce[2*i];
right = bounce[2*i+1];
if(sp->notch_enable && sp->notch_tone > 0){
left = applyIIR(&sp->iir_left,left);
right = applyIIR(&sp->iir_right,right);
}
}
if(!Voting || Best_session == sp){ // If voting, suppress all but best session
// Not the cleanest way to upsample the sample rate, but it works
// Should be replaced with a proper interpolator
for(int j=0; j < upsample; j++){
Output_buffer[left_index] += left * left_gain;
Output_buffer[right_index] += right * right_gain;
left_index += 2;
right_index += 2;
}
if(modsub(right_index/2,Wptr,BUFFERSIZE) > 0)
Wptr = right_index / 2; // samples to frames; For verbose mode
}
}
} else { // Channels == 1, no panning
int64_t index = sp->wptr;
for(int i=0; i < sp->frame_size; i++){
float s;
if(sp->channels == 1){
s = bounce[i];
} else {
// Downmix to mono
s = 0.5 * (bounce[2*i] + bounce[2*i+1]);
}
if(sp->notch_enable && sp->notch_tone > 0)
s = applyIIR(&sp->iir_left,s);
if(!Voting || Best_session == sp){ // If voting, suppress all but best session
// Not the cleanest way to upsample the sample rate, but it works
for(int j=0; j < upsample; j++)
Output_buffer[index++] += s * sp->gain;
if(modsub(index,Wptr,BUFFERSIZE) > 0)
Wptr = index; // For verbose mode
}
}
} // Channels == 1
endloop:;
FREE(bounce);
FREE(pkt);
} // !sp->terminate
pthread_cleanup_pop(1);
return NULL;
}
void reset_session(struct session * const sp,uint32_t timestamp){
sp->resets++;
if(sp->opus)
opus_decoder_ctl(sp->opus,OPUS_RESET_STATE); // Reset decoder
sp->reset = false;
sp->last_timestamp = timestamp;
sp->playout = Playout * DAC_samprate/1000;
sp->wptr = (Rptr + sp->playout) & (BUFFERSIZE-1);
}
// Start output stream if it was off; reset idle timeout on output audio stream activity
// Return true if we (re)started it
bool kick_output(){
bool restarted = false;
if(!Pa_IsStreamActive(Pa_Stream)){
// Start it up
if(!Pa_IsStreamStopped(Pa_Stream))
Pa_StopStream(Pa_Stream); // it was in limbo
Start_time = gps_time_ns();
Start_pa_time = Pa_GetStreamTime(Pa_Stream); // Stream Time runs continuously even when stream stopped
Audio_frames = 0;
// Adjust Rptr for the missing time we were asleep, but only
// if this isn't the first time
// This will break if someone goes back in time and starts this program at precisely 00:00:00 UTC on 1 Jan 1970 :-)
if(Last_callback_time != 0){
Rptr += DAC_samprate * (Start_pa_time - Last_callback_time);
Rptr &= (BUFFERSIZE-1);
}
int r = Pa_StartStream(Pa_Stream); // Immediately triggers the first callback
if(r != paNoError){
fprintf(stderr,"Portaudio error: %s, aborting\n",Pa_GetErrorText(r));
abort();
}
restarted = true;
}
Buffer_length = BUFFERSIZE; // (Continue to) run for at least the length of the ring buffer
// Key up the repeater if it's configured and not already on
if(Repeater_tail != 0){
LastAudioTime = gps_time_ns();
pthread_mutex_lock(&PTT_mutex);
if(!PTT_state){
PTT_state = true;
pthread_cond_signal(&PTT_cond); // Notify the repeater control thread to ID and run drop timer
}
pthread_mutex_unlock(&PTT_mutex);
}
return restarted;
}
// Assign pan position by reversing binary bits of counter
// Returns -1 to +1
static float make_position(int x){
x += 1; // Force first position to be in center, which is the default with a single stream
// Swap bit order
int y = 0;
const int w = 8;
for(int i=0; i < w; i++){
y = (y << 1) | (x & 1);
x >>= 1;
}
// Scale
return 0.5 * (((float)y / 128) - 1);
}