-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathmemory_util.py
307 lines (252 loc) · 13.4 KB
/
memory_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from __future__ import absolute_import
from __future__ import print_function
import os
import re
import sys
import tempfile
import tensorflow as tf
debug_messages = False
def vlog(level):
os.environ['TF_CPP_MIN_VLOG_LEVEL'] = str(level)
# this helper is here in case we later want to capture huge stderr that doesn't fit in RAM
class TemporaryFileHelper:
"""Provides a way to fetch contents of temporary file."""
def __init__(self, temporary_file):
self.temporary_file = temporary_file
def getvalue(self):
return open(self.temporary_file.name).read()
STDOUT=1
STDERR=2
class capture_stderr:
"""Utility to capture output, use as follows
with util.capture_stderr() as stderr:
sess = tf.Session()
print("Captured:", stderr.getvalue()).
"""
def __init__(self, fd=STDERR):
self.fd = fd
self.prevfd = None
def __enter__(self):
t = tempfile.NamedTemporaryFile()
self.prevfd = os.dup(self.fd)
os.dup2(t.fileno(), self.fd)
return TemporaryFileHelper(t)
def __exit__(self, exc_type, exc_value, traceback):
os.dup2(self.prevfd, self.fd)
################################################################################
# LOG_MEMORY_PARSING
################################################################################
# Until https://github.com/tensorflow/tensorflow/issues/6716 is resolved, the
# reliable way to get access to tensor deallocation information is to parse
# __LOG_MEMORY__ from VLOG print statements. This is sensitive to print order
# run unbuffered to prevent interleaving:
# python -u script.py
# Regex'es to parse __LOG_MEMORY__ statements
# Each regex is preceded by an example of line it's meant to pass
# I 5143420588.000000 file tensorflow/core/framework/log_memory.cc:41] __LOG_MEMORY__ MemoryLogTensorAllocation { step_id: -6 kernel_name: "Unknown (from Proto)" tensor { dtype: DT_INT32 shape { dim { size: 3 } } allocation_description { requested_bytes: 12 allocated_bytes: 12 allocator_name: "cpu" allocation_id: 3 has_single_reference: true ptr: 29496256 } } }
tensor_allocation_regex = re.compile("""MemoryLogTensorAllocation.*?step_id: (?P<step_id>[-0123456789]+).*kernel_name: \"(?P<kernel_name>[^"]+)\".*?allocated_bytes: (?P<allocated_bytes>\d+).*allocator_name: \"(?P<allocator_name>[^"]+)\".*allocation_id: (?P<allocation_id>\d+).*""")
# I 6795349363.000000 file tensorflow/core/framework/log_memory.cc:41] __LOG_MEMORY__ MemoryLogRawAllocation { step_id: -3 operation: "TF_AllocateTensor" num_bytes: 1000000 ptr: 80910752 allocation_id: 99 allocator_name: "cpu" }
raw_allocation_regex = re.compile("""MemoryLogRawAllocation.*?step_id: (?P<step_id>[-0123456789]+).*operation: \"(?P<kernel_name>[^"]+)\".*?num_bytes: (?P<allocated_bytes>\d+).*allocation_id: (?P<allocation_id>\d+).*allocator_name: "(?P<allocator_name>[^"]+)".*""")
# I 5143420588.000000 file tensorflow/core/framework/log_memory.cc:41] __LOG_MEMORY__ MemoryLogTensorOutput { step_id: 1 kernel_name: "Const" tensor { dtype: DT_INT32 shape { dim { size: 3 } } allocation_description { requested_bytes: 12 allocated_bytes: 12 allocator_name: "cpu" allocation_id: 3 ptr: 29496256 } } }
# 2017-01-26 10:13:30: I tensorflow/core/framework/log_memory.cc:35] __LOG_MEMORY__ MemoryLogTensorOutput { step_id: 2 kernel_name: "a0" tensor { dtype: DT_FLOAT shape { dim { size: 250000 } } allocation_description { requested_bytes: 1000000 allocated_bytes: 1000192 allocator_name: "gpu_bfc" allocation_id: 3 ptr: 30076651520 } } }
#tensor_output_regex = re.compile("""MemoryLogTensorOutput.* step_id: (?P<step_id>[-0123456789]+) kernel_name: \"(?P<kernel_name>[^"]+).*allocated_bytes: (?P<allocated_bytes>\d+).*allocation_id: (?P<allocation_id>\d+).*""")
tensor_output_regex = re.compile("""MemoryLogTensorOutput.* step_id: (?P<step_id>[-0123456789]+) kernel_name: \"(?P<kernel_name>[^"]+).*allocated_bytes: (?P<allocated_bytes>\d+).*allocator_name: \"(?P<allocator_name>[^"]+)\".*allocation_id: (?P<allocation_id>\d+).*""")
# some Shape lines are missing bytes info so have separate regex for them
# I 5162643141.000000 file tensorflow/core/framework/log_memory.cc:41] __LOG_MEMORY__ MemoryLogTensorOutput { step_id: 5 kernel_name: "gradients/Shape" tensor { dtype: DT_INT32 shape { dim { } } } }
tensor_output_regex_no_bytes = re.compile("""MemoryLogTensorOutput.* step_id: (?P<step_id>[-0123456789]+) kernel_name: \"(?P<kernel_name>[^"]+).*""")
# 5143420588.000000 file tensorflow/core/framework/log_memory.cc:41] __LOG_MEMORY__ MemoryLogTensorDeallocation { allocation_id: 2 allocator_name: "cpu" }
tensor_deallocation_regex = re.compile("""allocation_id: (?P<allocation_id>\d+).*allocator_name: \"(?P<allocator_name>[^"]+)\".*""")
# I 6796000229.000000 file tensorflow/core/framework/log_memory.cc:41] __LOG_MEMORY__ MemoryLogRawDeallocation { step_id: -3 operation: "TensorFlow C Api" allocation_id: 177 allocator_name: "cpu" }
raw_deallocation_regex = re.compile("""allocation_id: (?P<allocation_id>\d+).*allocator_name: \"(?P<allocator_name>[^"]+)\".*""")
# I 5143420588.000000 file tensorflow/core/framework/log_memory.cc:41] __LOG_MEMORY__ MemoryLogStep { step_id: 1 handle: "->Print:0//0/;0" }
tensor_logstep_regex = re.compile("""MemoryLogStep.*?step_id: (?P<step_id>[-0123456789]+).*""")
def _parse_logline(l):
if 'MemoryLogTensorOutput' in l:
m = tensor_output_regex.search(l)
if not m:
m = tensor_output_regex_no_bytes.search(l)
assert m, l
d = m.groupdict()
d["type"] = "MemoryLogTensorOutput"
elif 'MemoryLogTensorAllocation' in l:
m = tensor_allocation_regex.search(l)
# Broadcast args give weird allocation messages without size, ignore
# I tensorflow/core/framework/log_memory.cc:35] __LOG_MEMORY__ MemoryLogTensorAllocation { step_id: 2 kernel_name: "gradients/node_5_grad/BroadcastGradientArgs" tensor { dtype: DT_INT32 shape { dim { } } } }
if not m:
return {"type": "MemoryLogTensorAllocation", "line": l,
"allocation_id": "-1"}
assert m, l
d = m.groupdict()
d["type"] = "MemoryLogTensorAllocation"
if debug_messages:
print(("Got allocation for %s, %s"%(d["allocation_id"], d["kernel_name"])))
elif 'MemoryLogTensorDeallocation' in l:
m = tensor_deallocation_regex.search(l)
assert m, l
d = m.groupdict()
d["type"] = "MemoryLogTensorDeallocation"
if debug_messages:
print(("Got deallocation for %s"%(d["allocation_id"])))
elif 'MemoryLogStep' in l:
m = tensor_logstep_regex.search(l)
assert m, l
d = m.groupdict()
d["type"] = "MemoryLogStep"
elif 'MemoryLogRawAllocation' in l:
m = raw_allocation_regex.search(l)
assert m, l
d = m.groupdict()
d["type"] = "MemoryLogRawAllocation"
elif 'MemoryLogRawDeallocation' in l:
m = raw_deallocation_regex.search(l)
assert m, l
d = m.groupdict()
d["type"] = "MemoryLogRawDeallocation"
else:
assert False, "Unknown log line: "+l
if not "allocation_id" in d:
d["allocation_id"] = "-1"
d["line"] = l
return d
def memory_timeline(log):
if hasattr(log, 'getvalue'):
log = log.getvalue()
def unique_alloc_id(line):
if line["allocation_id"] == "-1":
return "-1"
return line["allocation_id"]+"-"+line["allocator_name"]
def get_alloc_names(line):
alloc_id = unique_alloc_id(line)
for entry in reversed(allocation_map.get(alloc_id, [])):
kernel_name = entry.get("kernel_name", "unknown")
if not "unknown" in kernel_name:
return kernel_name+"("+unique_alloc_id(line)+")"
# couldn't find an allocation message with name of kernel
return "("+alloc_id+")"
def get_alloc_bytes(line):
for entry in allocation_map.get(unique_alloc_id(line), []):
if "allocated_bytes" in entry:
return entry["allocated_bytes"]
return "0"
def get_alloc_type(line):
for entry in allocation_map.get(unique_alloc_id(line), []):
if "allocator_name" in entry:
return entry["allocator_name"]
return "0"
parsed_lines = []
for l in log.split("\n"):
if 'LOG_MEMORY' in l: # and not 'step_id: -6' in l:
parsed_lines.append(_parse_logline(l))
allocation_map = {} # map of <allocation_id>-<allocator_name>->parsed_logline of allocation
for line in parsed_lines:
if (line["type"] == "MemoryLogTensorAllocation" or line["type"] == "MemoryLogRawAllocation" or
line["type"] == "MemoryLogTensorOutput"):
allocation_map.setdefault(unique_alloc_id(line), []).append(line)
if debug_messages:
print(allocation_map)
result = []
for i, line in enumerate(parsed_lines):
# skip lines without allocation_id, ie lines like
# I tensorflow/core/framework/log_memory.cc:35] __LOG_MEMORY__ MemoryLogStep { step_id: 2 handle: "->/gradients/a1_grad/TanhGrad/0/;1" }
if int(line["allocation_id"]) == -1:
continue
alloc_names = get_alloc_names(line)
# if line doesn't specify bytes, look in history if there was corresponding TensorOutput or TensorAllocation msg
if int(line.get('allocated_bytes', -1)) < 0:
alloc_bytes = get_alloc_bytes(line)
else:
alloc_bytes = line.get('allocated_bytes', -1)
alloc_type = get_alloc_type(line)
if line["type"] == "MemoryLogTensorOutput":
continue
if line["type"] == "MemoryLogTensorDeallocation" or line["type"]=="MemoryLogRawDeallocation":
alloc_bytes = "-" + alloc_bytes
result.append((i, alloc_names, alloc_bytes, alloc_type))
return result
def peak_memory(log, gpu_only=False):
"""Peak memory used across all devices."""
peak_memory = -123456789 # to catch bugs
total_memory = 0
for record in memory_timeline(log):
i, kernel_name, allocated_bytes, allocator_type = record
allocated_bytes = int(allocated_bytes)
if gpu_only:
if not allocator_type.startswith("gpu"):
continue
total_memory += allocated_bytes
peak_memory = max(total_memory, peak_memory)
return peak_memory
def print_memory_timeline(log, gpu_only=False, ignore_less_than_bytes=0):
total_memory = 0
for record in memory_timeline(log):
i, kernel_name, allocated_bytes, allocator_type = record
allocated_bytes = int(allocated_bytes)
if gpu_only:
if not allocator_type.startswith("gpu"):
continue
if abs(allocated_bytes)<ignore_less_than_bytes:
continue # ignore small allocations
total_memory += allocated_bytes
print(("%9d %42s %11d %11d %s"%(i, kernel_name, allocated_bytes, total_memory, allocator_type)))
import matplotlib.pyplot as plt
def plot_memory_timeline(log, gpu_only=False, ignore_less_than_bytes=1000):
total_memory = 0
timestamps = []
data = []
current_time = 0
for record in memory_timeline(log):
timestamp, kernel_name, allocated_bytes, allocator_type = record
allocated_bytes = int(allocated_bytes)
if abs(allocated_bytes)<ignore_less_than_bytes:
continue # ignore small allocations
if gpu_only:
if not record[3].startswith("gpu"):
continue
timestamps.append(current_time-.00000001)
data.append(total_memory)
total_memory += int(record[2])
timestamps.append(current_time)
data.append(total_memory)
current_time+=1
plt.plot(timestamps, data)
################################################################################
# smart initialize
################################################################################
def smart_initialize(variables=None, sess=None):
"""Initializes all uninitialized variables in correct order. Initializers
are only run for uninitialized variables, so it's safe to run this multiple
times.
Args:
sess: session to use. Use default session if None.
"""
from tensorflow.contrib import graph_editor as ge
def make_initializer(var):
def f():
return tf.assign(var, var.initial_value).op
return f
def make_noop(): return tf.no_op()
def make_safe_initializer(var):
"""Returns initializer op that only runs for uninitialized ops."""
return tf.cond(tf.is_variable_initialized(var), make_noop,
make_initializer(var), name="safe_init_"+var.op.name).op
if not sess:
sess = tf.get_default_session()
g = tf.get_default_graph()
if not variables:
variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
safe_initializers = {}
for v in variables:
safe_initializers[v.op.name] = make_safe_initializer(v)
# initializers access variable vaue through read-only value cached in
# <varname>/read, so add control dependency to trigger safe_initializer
# on read access
for v in variables:
var_name = v.op.name
var_cache = g.get_operation_by_name(var_name+"/read")
ge.reroute.add_control_inputs(var_cache, [safe_initializers[var_name]])
sess.run(tf.group(*safe_initializers.values()))
# remove initializer dependencies to avoid slowing down future variable reads
for v in variables:
var_name = v.op.name
var_cache = g.get_operation_by_name(var_name+"/read")
ge.reroute.remove_control_inputs(var_cache, [safe_initializers[var_name]])