-
Notifications
You must be signed in to change notification settings - Fork 34
/
utils.py
417 lines (329 loc) · 13.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
''' Version 1.000
Code provided by Daniel Jiwoong Im
Permission is granted for anyone to copy, use, modify, or distribute this
program and accompanying programs and documents for any purpose, provided
this copyright notice is retained and prominently displayed, along with
a note saying that the original programs are available from our
web page.
The programs and documents are distributed without any warranty, express or
implied. As the programs were written for research purposes only, they have
not been tested to the degree that would be advisable in any important
application. All use of these programs is entirely at the user's own risk.'''
import os, sys, cPickle, PIL, math, pylab
import matplotlib as mp
import matplotlib.pyplot as plt
import numpy as np
from numpy.lib import stride_tricks
import theano
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams
import theano.sandbox.rng_mrg as RNG_MRG
rng = np.random.RandomState()
def conv_cond_concat(x, y):
"""
concatenate conditioning vector on feature map axis
"""
return T.concatenate([x, y*T.ones((x.shape[0], y.shape[1], x.shape[2], x.shape[3]))], axis=1)
def init_conv_weights(W_low, W_high, filter_shape, numpy_rng, rng_dist='normal'):
"""
initializes the convnet weights.
"""
if 'uniform' in rng_dist:
return np.asarray(
numpy_rng.uniform(low=W_low, high=W_high, size=filter_shape),
dtype=theano.config.floatX)
elif rng_dist == 'normal':
return 0.01 * numpy_rng.normal(size=filter_shape).astype(theano.config.floatX)
def initialize_weight(n_vis, n_hid, W_name, numpy_rng, rng_dist):
"""
"""
if 'uniform' in rng_dist:
W = numpy_rng.uniform(low=-np.sqrt(6. / (n_vis + n_hid)),\
high=np.sqrt(6. / (n_vis + n_hid)),
size=(n_vis, n_hid)).astype(theano.config.floatX)
elif rng_dist == 'normal':
W = 0.01 * numpy_rng.normal(size=(n_vis, n_hid)).astype(theano.config.floatX)
elif rng_dist == 'ortho': ### Note that this only works for square matrices
N_ = int(n_vis / float(n_hid))
sz = np.minimum(n_vis, n_hid)
W = np.zeros((n_vis, n_hid), dtype=theano.config.floatX)
for i in xrange(N_):
temp = 0.01 * numpy_rng.normal(size=(sz, sz)).astype(theano.config.floatX)
W[:, i*sz:(i+1)*sz] = sp.linalg.orth(temp)
return theano.shared(value = np.cast[theano.config.floatX](W), name=W_name)
'''Initialize the bias'''
def initialize_bias(n, b_name):
return theano.shared(value = np.cast[theano.config.floatX](np.zeros((n,)), \
dtype=theano.config.floatX), name=b_name)
def unpickle(path):
''' For cifar-10 data, it will return dictionary'''
#Load the cifar 10
f = open(path, 'rb')
data = cPickle.load(f)
f.close()
return data
def share_input(x):
return theano.shared(np.asarray(x, dtype=theano.config.floatX))
def shared_dataset(data_xy):
""" Function that loads the dataset into shared variables
The reason we store our dataset in shared variables is to allow
Theano to copy it into the GPU memory (when code is run on GPU).
Since copying data into the GPU is slow, copying a minibatch everytime
is needed (the default behaviour if the data is not in a shared
variable) would lead to a large decrease in performance.
"""
data_x, data_y = data_xy
shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX))
shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX))
#When storing data on the GPU it has to be stored as floats
# therefore we will store the labels as ``floatX`` as well
# (``shared_y`` does exactly that). But during our computations
# we need them as ints (we use labels as index, and if they are
# floats it doesn't make sense) therefore instead of returning
# ``shared_y`` we will have to cast it to int. This little hack
# lets us get around this issue
return shared_x, T.cast(shared_y, 'int32')
def repmat_tensor(x,k):
return T.tile(x.dimshuffle([0,1, 2,'x']), [1,1,1,k])
def activation_fn_th(X,atype='sigmoid', leak_thrd=0.2):
'''collection of useful activation functions'''
if atype == 'softmax':
return T.nnet.softmax(X)
elif atype == 'sigmoid':
return T.nnet.sigmoid(X)
elif atype == 'tanh':
return T.tanh(X)
elif atype == 'softplus':
return T.nnet.softplus(X)
elif atype == 'relu':
return (X + abs(X)) / 2.0
elif atype == 'linear':
return X
elif atype =='leaky':
f1 = 0.5 * (1 + leak_thrd)
f2 = 0.5 * (1 - leak_thrd)
return f1 * X + f2 * abs(X)
def save_the_weight(x,fname):
'''save pickled weights'''
f = file(fname+'.save', 'wb')
cPickle.dump(x, f, protocol=cPickle.HIGHEST_PROTOCOL)
print("saved!")
f.close()
'''Display the data.
data - n_dim X 3 , n_dim = dim_x * dim_y '''
def display_data(data, img_sz, RGB_flag=False, ):
if RGB_flag:
pic = data.reshape(img_sz[0],img_sz[1],3)
else:
pic = data.reshape(img_sz[0],img_sz[1])
plt.figure()
plt.imshow(pic, cmap='gray')
'''Display dataset as a tiles'''
def display_dataset(data, patch_sz, tile_shape, scale_rows_to_unit_interval=False, \
binary=False, i=1, fname='dataset'):
x = tile_raster_images(data, img_shape=patch_sz, \
tile_shape=tile_shape, tile_spacing=(1,1), output_pixel_vals=False, scale_rows_to_unit_interval=scale_rows_to_unit_interval)
if binary:
x[x==1] = 255
## For MNIST
if fname != None:
plt.figure()
plt.imshow(x,cmap='gray')
plt.axis('off')
plt.savefig(fname+'.png', bbox_inches='tight')
else:
plt.figure()
plt.imshow(x,cmap='gray')
plt.axis('off')
plt.show(block=True)
def scale_to_unit_interval(ndar, eps=1e-8):
""" Scales all values in the ndarray ndar to be between 0 and 1 """
ndar = ndar.copy()
ndar -= ndar.min()
ndar *= 1.0 / (ndar.max() + eps)
return ndar
def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0),
scale_rows_to_unit_interval=False,
output_pixel_vals=True):
"""
Transform an array with one flattened image per row, into an array in
which images are reshaped and layed out like tiles on a floor.
This function is useful for visualizing datasets whose rows are images,
and also columns of matrices for transforming those rows
(such as the first layer of a neural net).
:type X: a 2-D ndarray or a tuple of 4 channels, elements of which can
be 2-D ndarrays or None;
:param X: a 2-D array in which every row is a flattened image.
:type img_shape: tuple; (height, width)
:param img_shape: the original shape of each image
:type tile_shape: tuple; (rows, cols)
:param tile_shape: the number of images to tile (rows, cols)
:param output_pixel_vals: if output should be pixel values (i.e. int8
values) or floats
:param scale_rows_to_unit_interval: if the values need to be scaled before
being plotted to [0,1] or not
:returns: array suitable for viewing as an image.
(See:`PIL.Image.fromarray`.)
:rtype: a 2-d array with same dtype as X.
"""
assert len(img_shape) == 2
assert len(tile_shape) == 2
assert len(tile_spacing) == 2
# The expression below can be re-written in a more C style as
# follows :
#
# out_shape = [0,0]
# out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] -
# tile_spacing[0]
# out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] -
# tile_spacing[1]
out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp
in zip(img_shape, tile_shape, tile_spacing)]
if isinstance(X, tuple):
assert len(X) == 4
# Create an output numpy ndarray to store the image
if output_pixel_vals:
out_array = np.zeros((out_shape[0], out_shape[1], 4),
dtype='uint8')
else:
out_array = np.zeros((out_shape[0], out_shape[1], 4),
dtype=X[0].dtype)
#colors default to 0, alpha defaults to 1 (opaque)
if output_pixel_vals:
channel_defaults = [0, 0, 0, 255]
else:
channel_defaults = [0., 0., 0., 1.]
for i in xrange(4):
if X[i] is None:
# if channel is None, fill it with zeros of the correct
# dtype
dt = out_array.dtype
if output_pixel_vals:
dt = 'uint8'
out_array[:, :, i] = np.zeros(out_shape,
dtype=dt) + channel_defaults[i]
else:
# use a recurrent call to compute the channel and store it
# in the output
out_array[:, :, i] = tile_raster_images(
X[i], img_shape, tile_shape, tile_spacing,
scale_rows_to_unit_interval, output_pixel_vals)
return out_array
else:
# if we are dealing with only one channel
H, W = img_shape
Hs, Ws = tile_spacing
# generate a matrix to store the output
dt = X.dtype
if output_pixel_vals:
dt = 'uint8'
out_array = np.zeros(out_shape, dtype=dt)
for tile_row in xrange(tile_shape[0]):
for tile_col in xrange(tile_shape[1]):
#print tile_row, tile_shape[1], tile_col, X.shape[0]
#print tile_row * tile_shape[1] + tile_col < X.shape[0]
if tile_row * tile_shape[1] + tile_col < X.shape[0]:
this_x = X[tile_row * tile_shape[1] + tile_col]
#print this_x
#print scale_rows_to_unit_interval
if scale_rows_to_unit_interval:
# if we should scale values to be between 0 and 1
# do this by calling the `scale_to_unit_interval`
# function
this_img = scale_to_unit_interval(
this_x.reshape(img_shape))
#print this_x.shape
#print this_img
else:
this_img = this_x.reshape(img_shape)
# add the slice to the corresponding position in the
# output array
#print this_x.shape
#print this_img
c = 1
if output_pixel_vals:
c = 255
out_array[
tile_row * (H + Hs): tile_row * (H + Hs) + H,
tile_col * (W + Ws): tile_col * (W + Ws) + W
] = this_img * c
return out_array
def get_corrupted_input(rng, input, corruption_level, ntype='zeromask'):
''' depending on requirement, returns input corrupted by zeromask/gaussian/salt&pepper'''
MRG = RNG_MRG.MRG_RandomStreams(rng.randint(2 ** 30))
#theano_rng = RandomStreams()
if corruption_level == 0.0:
return input
if ntype=='zeromask':
return MRG.binomial(size=input.shape, n=1, p=1-corruption_level,dtype=theano.config.floatX) * input
elif ntype=='gaussian':
return input + MRG.normal(size = input.shape, avg = 0.0,
std = corruption_level, dtype = theano.config.floatX)
elif ntype=='salt_pepper':
# salt and pepper noise
print 'DAE uses salt and pepper noise'
a = MRG.binomial(size=input.shape, n=1,\
p=1-corruption_level,dtype=theano.config.floatX)
b = MRG.binomial(size=input.shape, n=1,\
p=corruption_level,dtype=theano.config.floatX)
c = T.eq(a,0) * b
return input * a + c
''' improving learning rate'''
def get_epsilon_inc(epsilon, n, i):
"""
n: total num of epoch
i: current epoch num
"""
return epsilon / ( 1 - i/float(n))
'''decaying learning rate'''
def get_epsilon(epsilon, n, i):
"""
n: total num of epoch
i: current epoch num
"""
return epsilon / ( 1 + i/float(n))
def get_epsilon_decay(i, num_epoch, constant=4):
c = np.log(num_epoch/2)/ np.log(constant)
return 10.**(1-(i-1)/(float(c)))
'''Given tiles of raw data, this function will return training, validation, and test sets.
r_train - ratio of train set
r_valid - ratio of valid set
r_test - ratio of test set'''
def gen_train_valid_test(raw_data, raw_target, r_train, r_valid, r_test):
N = raw_data.shape[0]
perms = np.random.permutation(N)
raw_data = raw_data[perms,:]
raw_target = raw_target[perms]
tot = float(r_train + r_valid + r_test) #Denominator
p_train = r_train / tot #train data ratio
p_valid = r_valid / tot #valid data ratio
p_test = r_test / tot #test data ratio
n_raw = raw_data.shape[0] #total number of data
n_train =int( math.floor(n_raw * p_train)) # number of train
n_valid =int( math.floor(n_raw * p_valid)) # number of valid
n_test =int( math.floor(n_raw * p_test) ) # number of test
train = raw_data[0:n_train, :]
valid = raw_data[n_train:n_train+n_valid, :]
test = raw_data[n_train+n_valid: n_train+n_valid+n_test,:]
train_target = raw_target[0:n_train]
valid_target = raw_target[n_train:n_train+n_valid]
test_target = raw_target[n_train+n_valid: n_train+n_valid+n_test]
print 'Among ', n_raw, 'raw data, we generated: '
print train.shape[0], ' training data'
print valid.shape[0], ' validation data'
print test.shape[0], ' test data\n'
train_set = [train, train_target]
valid_set = [valid, valid_target]
test_set = [test, test_target]
return [train_set, valid_set, test_set]
def dist2hy(x,y):
'''Distance matrix computation
Hybrid of the two, switches based on dimensionality
'''
d = T.dot(x,y.T)
d *= -2.0
d += T.sum(x*x, axis=1).dimshuffle(0,'x')
d += T.sum(y*y, axis=1)
# Rounding errors occasionally cause negative entries in d
d = d * T.cast(d>0,theano.config.floatX)
return T.sqrt(d)