-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain_rpn_kws.py
executable file
·406 lines (358 loc) · 19.4 KB
/
train_rpn_kws.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#!/usr/bin/env python
# Copyrigh 2018 [email protected]
# MIT Licence
from __future__ import print_function
import os, sys, argparse, datetime, shutil
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from bbox_transform import get_out_utt_boxes
from config import cfg
from config import cfg_from_file
from streaming_special_torch_dataset import *
from kaldi_io import *
from RNNs import GRU
from RPN import RPN
from RPN_KWS import RPN_KWS
from utils import AverageMeter, count_parameters
from loss import loss_frame_fn_ce, acc_frame
def get_args():
"""Get arguments from stdin."""
parser = argparse.ArgumentParser(description='Pytorch acoustic model.')
parser.add_argument('--encoder', type=str, default='gru',
help='encoder type {default: gru}')
parser.add_argument('--num-anchor', type=int, default=10, metavar='HF',
help='Num anchors per frame {default: 10.0}')
parser.add_argument('--lambda-factor', type=float, default=5.0, metavar='HF',
help='Balance factor between classification and regression loss (default: 5.0).')
parser.add_argument('--input-dim', type=int, default=40, metavar='N',
help='Input feature dimension without context (default: 40).')
parser.add_argument('--kernel-size', type=int, default=3, metavar='N',
help='Kernel size of Wavenet or CNN (default:3).')
parser.add_argument('--hidden-dim', type=int, default=128, metavar='N',
help='Hidden dimension of feature extractor (default: 128).')
parser.add_argument('--num-layers', type=int, default=2, metavar='N',
help='Numbers of hidden layers of feature extractor (default: 2).')
parser.add_argument('--output-dim', type=int, default=2000, metavar='N',
help='Output dimension, number of classes (default: 2000).')
parser.add_argument('--dropout', type=float, default=0.0001, metavar='DR',
help='dropout of feature extractor (default: 0.0001).')
parser.add_argument('--left-context', type=int, default=5, metavar='N',
help='Left context length for splicing feature (default: 5).')
parser.add_argument('--right-context', type=int, default=5, metavar='N',
help='Right context length for splicing feature (default: 5).')
parser.add_argument('--max-epochs', type=int, default=20, metavar='N',
help='Maximum epochs to train (default: 20).')
parser.add_argument('--min-epochs', type=int, default=0, metavar='N',
help='Minimum epochs to train (default: 0).')
parser.add_argument('--batch-size', type=int, default=8, metavar='N',
help='Batch size for training (default: 8).')
parser.add_argument('--learning-rate', type=float, default=0.001, metavar='LR',
help='Initial learning rate (default: 0.001).')
parser.add_argument('--halving-factor', type=float, default=0.5, metavar='HF',
help='Half factor for learning rate (default: 0.5).')
parser.add_argument('--start-halving-impr', type=float, default=0.01, metavar='S',
help='Improvement threshold to half the learning rate (default: 0.01).')
parser.add_argument('--end-halving-impr', type=float, default=0.001, metavar='E',
help='Improvement threshold to stop half learning rate (default: 0.001).')
parser.add_argument('--init-weight-decay', type=float, default=1e-5, metavar='E',
help='Weight decay of L2 normalization (default: 1e-5).')
parser.add_argument('--seed', type=int, default=1234, metavar='S',
help='Random seed (default: 1234).')
parser.add_argument('--use-cuda', type=int, default=1, metavar='C',
help='Use cuda (1) or cpu(0).')
parser.add_argument('--multi-gpu', type=int, default=0, metavar='G',
help='Use multi gpu (1) or not (0).')
parser.add_argument('--train', type=int, default=1,
help='Executing mode, train (1) or test (0).')
parser.add_argument('--train-scp', type=str, default='',
help='Training data file.')
parser.add_argument('--dev-scp', type=str, default='',
help='Development data file.')
parser.add_argument('--save-dir', type=str, default='',
help='Directory to output the model.')
parser.add_argument('--load-model', type=str, default='',
help='Previous model to load.')
parser.add_argument('--test', type=int, default=0,
help='Executing mode, 1 for test, 0 no test')
parser.add_argument('--test-scp', type=str, default='',
help='Test data file.')
parser.add_argument('--output-file', type=str, default='',
help='Test output file')
parser.add_argument('--region-output-file', type=str, default='',
help='Region output file')
parser.add_argument('--log-interval', type=int, default=1000, metavar='N',
help='How many batches to wait before logging training status.')
parser.add_argument('--num-workers', type=int, default=1, metavar='N',
help='How many workers used to load data')
parser.add_argument('--config-file', type=str, default='',
help='config file in yaml format')
args = parser.parse_args()
if args.config_file != '':
cfg_from_file(args.config_file)
return args
def get_new_target(device, target, num_p, num_n):
new_target=[]
for i in range(target.size(0)):
if target[i][0] == 0:
new_target += ([target[i][0]] * num_n)
else:
new_target += ([target[i][0]] * num_p)
return torch.LongTensor(new_target).to(device)
def adjust_learning_rate(args, optimizer):
"""Half the learning rate when relative improvement is too low.
Args:
args: Arguments for training.
optimizer: Optimizer for training.
"""
args.learning_rate *= args.halving_factor
for param_group in optimizer.param_groups:
param_group['lr'] = args.learning_rate
def train(args, model, device, train_loader, optimizer, epoch):
"""Train one epoch."""
tr_rpn_loss_bbox = AverageMeter()
tr_rpn_loss_cls = AverageMeter()
tr_loss = AverageMeter()
tr_rpn_acc = AverageMeter()
model.train()
total_step = len(train_loader)
balance_weight=args.lambda_factor
for batch_idx, (utt_id, act_lens, data, target) in enumerate(train_loader):
act_lens, data, target = act_lens.to(device), data.to(device), target.to(device)
target = target.reshape(target.size(0), 1, target.size(1)).float()
# Forward pass
batch_size = data.shape[0]
outputs = model(epoch, data, act_lens, target, 100)
rois, rpn_cls_score, rpn_label, rpn_loss_cls, rpn_loss_bbox = outputs
rpn_acc = acc_frame(rpn_cls_score, rpn_label)
# Backward and optimize
loss = rpn_loss_cls + balance_weight * rpn_loss_bbox
optimizer.zero_grad()
loss.backward()
#name, param=list(model.named_parameters())[1]
#print('Epoch:[{}/{}], param name:{},\n param:'.format(epoch+1, args.max_epochs, name, param))
optimizer.step()
tr_rpn_acc.update(rpn_acc, 1)
tr_loss.update(loss, 1)
tr_rpn_loss_cls.update(rpn_loss_cls, 1)
tr_rpn_loss_bbox.update(rpn_loss_bbox, 1)
if batch_idx % args.log_interval == 0:
print('Epoch: [{}/{}], Step [{}/{}], Train Loss: {:.4f}, Train RPN Acc: {:.4f}%'
.format(epoch+1, args.max_epochs, batch_idx+1, total_step, tr_loss.cur, tr_rpn_acc.cur))
print('Epoch: [{}/{}], Step [{}/{}], Train RPN cls Loss: {:.4f}, Train RPN bbox Loss: {:.4f} '
.format(epoch+1, args.max_epochs, batch_idx+1, total_step, tr_rpn_loss_cls.cur, tr_rpn_loss_bbox.cur))
print('Epoch: [{}/{}], Average Train Loss: {:.4f}, Average Train RPN cls Loss: {:.4f}, Average Train RPN bbox Loss: {:.4f}, AverageAverage Train RPN Acc: {:.4f}%'
.format(epoch+1, args.max_epochs, tr_loss.avg, tr_rpn_loss_cls.avg, tr_rpn_loss_bbox.avg, tr_rpn_acc.avg))
return float("{:.4f}".format(tr_loss.avg))
def validate(args, model, device, dev_loader, epoch):
"""Cross validate the model."""
meter_rpn_loss_bbox = AverageMeter()
balance_weight = args.lambda_factor
meter_rpn_loss_cls = AverageMeter()
meter_loss = AverageMeter()
meter_rpn_acc = AverageMeter()
balance_weight = args.lambda_factor
with torch.no_grad():
total_step = len(dev_loader)
for batch_idx, (utt_id, act_lens, data, target) in enumerate(dev_loader):
act_lens, data, target = act_lens.to(device), data.to(device), target.to(device)
target = target.reshape(target.size(0), 1, target.size(1)).float()
# Forward pass
batch_size = data.shape[0]
outputs = model(epoch, data, act_lens, target, 100)
rois, rpn_cls_score, rpn_label, rpn_loss_cls, rpn_loss_bbox = outputs
rpn_acc = acc_frame(rpn_cls_score, rpn_label)
# Backward and optimize
loss = rpn_loss_cls + balance_weight * rpn_loss_bbox
meter_rpn_acc.update(rpn_acc, 1)
meter_loss.update(loss, 1)
meter_rpn_loss_cls.update(rpn_loss_cls, 1)
meter_rpn_loss_bbox.update(rpn_loss_bbox, 1)
if batch_idx % args.log_interval == 0:
print('Epoch: [{}/{}], Step [{}/{}], Val Loss: {:.4f}, Val RPN Acc: {:.4f}% '
.format(epoch+1, args.max_epochs, batch_idx+1, total_step, meter_loss.cur, meter_rpn_acc.cur))
print('Epoch: [{}/{}], Step [{}/{}], Val RPN cls Loss: {:.4f}, Val RPN bbox Loss: {:.4f} '
.format(epoch+1, args.max_epochs, batch_idx+1, total_step, meter_rpn_loss_cls.cur, meter_rpn_loss_bbox.cur))
print('Epoch: [{}/{}], Average Val Loss: {:.4f}, Average Val RPN cls Loss: {:.4f}, Average Val RPN bbox Loss: {:.4f}, Average Val RPN Acc: {:.4f}%'
.format(epoch+1, args.max_epochs, meter_loss.avg, meter_rpn_loss_cls.avg, meter_rpn_loss_bbox.avg, meter_rpn_acc.avg))
return float("{:.4f}".format(meter_loss.avg))
def test(args, model, device, test_loader, output_file, region_output_file):
"""Test the model"""
write_post = open_or_fd(output_file, "wb")
fid = open(region_output_file, "w")
model.eval()
with torch.no_grad():
total_step = len(test_loader)
for batch_idx, (utt_ids, act_lens, data, target) in enumerate(test_loader):
act_lens, data, target = act_lens.to(device), data.to(device), target.to(device)
target = target.reshape(target.size(0), 1, target.size(1)).float()
# Forward pass
batch_size = data.shape[0]
max_lens = data.shape[1]
num_anchors_per_frame = args.num_anchor
num_classes = args.output_dim
outputs = model(0, data, act_lens, target, 100)
rois, rpn_cls_score, anchors_per_utt = outputs
rpn_cls_prob = F.softmax(rpn_cls_score, dim=2)
disable_indexes = get_out_utt_boxes(anchors_per_utt, act_lens, batch_size)
rpn_cls_prob[disable_indexes] = 0
rpn_cls_prob = rpn_cls_prob.view(batch_size, max_lens, num_anchors_per_frame, num_classes)
rois = rois.view(batch_size, max_lens, num_anchors_per_frame, 2)
anchors_per_utt = anchors_per_utt.view(max_lens, num_anchors_per_frame, 2)
rpn_cls_prob, arg_max_anchor = torch.max(rpn_cls_prob, dim=2)
max_score, arg_max_score = torch.max(rpn_cls_prob, dim=1) # get the index of each utterance
data_write = rpn_cls_prob.cpu().numpy()
for i in range (len(utt_ids)):
utt_id = utt_ids[i]
act_len = act_lens[i]
write_mat(write_post, data_write[i,0:act_len,:], utt_id)
fid.writelines(utt_id)
label = target[i][0].cpu().numpy()
fid.writelines(", %f %f %f"%(label[0],label[1],label[2]))
for j in range(num_classes-1):
best_score1 = max_score[i][1+j]
best_frame1 = arg_max_score[i][1+j]
best_anchor1 = arg_max_anchor[i][best_frame1][1+j]
roi1 = rois[i][best_frame1][best_anchor1] # anchor of keyword 1
anchor1 = anchors_per_utt[best_frame1][best_anchor1]
roi1=roi1.cpu().numpy()
anchor1 = anchor1.cpu().numpy()
fid.writelines(", %f %f %f, %f %f %f"%(best_score1, anchor1[0], anchor1[1], best_score1, roi1[0], roi1[1]))
fid.writelines("\n")
write_post.close()
fid.close()
def main():
args = get_args()
device = torch.device('cuda' if args.use_cuda else 'cpu')
torch.manual_seed(args.seed)
if args.encoder=='gru':
feature_extractor = GRU(input_size=args.input_dim,
output_size=args.hidden_dim,
hidden_size=args.hidden_dim,
num_layers=args.num_layers,
bias=True, batch_first=True,
dropout=args.dropout,
bidirectional=False,
output_layer=False)
else:
print("unsupported feature extractor: %s"%args.encoder)
exit(1)
rpn = RPN(128, args.num_anchor, args.output_dim)
model = RPN_KWS(feature_extractor, rpn, args.output_dim).to(device)
params = count_parameters(model)
print("Num parameters: %d, Num Flops: %d\n"%(params,0))
if args.multi_gpu:
model = nn.DataParallel(model)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.init_weight_decay)
print("Global Config:\n {}".format(cfg))
print("Training Arguments:\n {}".format(args))
print("Training Model:\n {}".format(model))
print("Training Optimizer:\n {}".format(optimizer))
# Load previous trained model
if args.load_model != '':
print("=> Loading previous checkpoint to train: {}".format(args.load_model))
checkpoint = torch.load(args.load_model)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
prev_val_loss = checkpoint['prev_val_loss']
elif not args.train:
sys.exit("Option --load-model should not be empty for testing.")
else:
print("=> No checkpoint found.")
prev_val_loss = float('inf')
# For training
if args.train:
if args.train_scp == '' or args.dev_scp == '':
sys.exit("Options --train-scp and --dev-scp are required for training.")
if args.save_dir == '':
sys.exit("Option --save-dir is required to save model.")
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
halving = 0
best_model = args.load_model
kwargs = {'num_workers': 3, 'pin_memory': True} if args.use_cuda else {}
# Training data loader
train_set = StreamingTorchDataset(args.train_scp, ["kaldi_reader", "raw_list_reader"], args.left_context, args.right_context)
train_loader = torch.utils.data.DataLoader(
dataset=train_set,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
collate_fn=collate_fn)
# Dev data loader
dev_set = StreamingTorchDataset(args.dev_scp,["kaldi_reader", "raw_list_reader"], args.left_context, args.right_context)
dev_loader = torch.utils.data.DataLoader(
dataset=dev_set,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
collate_fn=collate_fn)
for epoch in range(args.max_epochs):
cur_tr_loss = train(args, model, device, train_loader,optimizer, epoch)
cur_val_loss = validate(args, model, device, dev_loader, epoch)
rel_impr = (prev_val_loss - cur_val_loss) / prev_val_loss
model_name = 'nnet_epoch' + str(epoch+1) + '_lr' \
+ str(args.learning_rate) + '_tr' + str(cur_tr_loss) \
+ '_cv' + str(cur_val_loss) + '.ckpt'
model_path = args.save_dir + '/' + model_name
if cur_val_loss < prev_val_loss:
prev_val_loss = cur_val_loss
torch.save({
'prev_val_loss': prev_val_loss,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()
}, model_path)
best_model = model_path
print("Model {} accepted. Time: {}".format(model_name,
datetime.datetime.now()))
else:
print ("Model {} rejected. Time: {}".format(model_name,
datetime.datetime.now()))
if best_model != '':
print("=> Loading best checkpoint: {}".format(best_model))
checkpoint = torch.load(best_model)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
prev_val_loss = checkpoint['prev_val_loss']
else:
sys.exit("Error training neural network.")
# Stopping training criterion
if halving and rel_impr < args.end_halving_impr:
if epoch < args.min_epochs:
print("We were supposed to finish, but we continue as min_epochs"
.format(args.min_epochs))
continue
else:
print("Finished, too small relative improvement {}".format(rel_impr))
break
# Start halving when improvement is low
if rel_impr < args.start_halving_impr:
halving = 1
if halving:
adjust_learning_rate(args, optimizer)
print("Halving learning rate to {}".format(args.learning_rate))
if best_model != args.load_model:
final_model = args.save_dir + "/final.mdl"
shutil.copyfile(best_model, final_model)
print("Succeeded training the neural network: {}/final.mdl"
.format(args.save_dir))
else:
sys.exit("Error training neural network.")
# For testing
if args.test:
# Test data loader
if args.test_scp == '' or args.output_file == '':
sys.exit("Options --test-scp and --output-file are required for testing")
test_set = StreamingTorchDataset(args.test_scp,["kaldi_reader", "raw_list_reader"], args.left_context, args.right_context)
test_loader = torch.utils.data.DataLoader(
dataset=test_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
collate_fn=collate_fn)
test(args, model, device, test_loader, args.output_file, args.region_output_file)
if __name__ == '__main__':
main()