-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathanalysis.sh
executable file
·493 lines (476 loc) · 15.4 KB
/
analysis.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
#!/usr/bin/bash
source tryggve/analysis.ini
gunzip -c sumstats/INTERVAL/INTERVAL.4E.BP1.gz | head -1 > ~/INF/work/sumstats.hdr
gunzip -c METAL/4E.BP1-1.tbl.gz | head -1 > ~/INF/work/METAL.hdr
function qml()
{
echo "--> Q-Q/Manhattan/LocusZoom plots"
export rt=$HOME/INF
(
echo -e "chrom\tstart\tend\tgene\tprot"
sort -k2,2 $rt/inf1.list > inf1.tmp
cut -f2,3,7-10 $rt/doc/olink.inf.panel.annot.tsv | \
awk -vFS="\t" -vOFS="\t" '(NR>1){
gsub(/\"/,"",$0)
if($2=="Q8NF90") $3="FGF5"
if($2=="Q8WWJ7") $3="CD6"
print
}' | \
sort -t$'\t' -k2,2 | \
join -t$'\t' -j2 inf1.tmp - | \
awk -vFS="\t" -vOFS="\t" '{print $5,$6,$7,$4,$2}' | \
sort -k1,1n -k2,2n
) > st.bed
cut -f1 ${INF}/work/inf1.tmp | \
grep -v BDNF | \
parallel -j8 --env INF -C' ' 'export protein={}; export file=${INF}/METAL/{}-1.tbl.gz; R --no-save -q < ${INF}/tryggve/qqman.R'
ls METAL/*-1.tbl.gz | \
sed 's|METAL/||g;s/-1.tbl.gz//g' | \
parallel -j4 -C' ' '
(
echo -e "MarkerName\tP-value\tWeight"
grep -w {} st.bed | \
awk -vOFS="\t" -vM=1000000 "{start=\$2-M;if(start<0) start=0;end=\$3+M;\$2=start;\$3=end};1" > st.{}
read chrom start end gene prot < st.{}
rm st.{}
gunzip -c METAL/{}-1.tbl.gz | \
awk -vOFS="\t" -vchr=$chrom -vstart=$start -vend=$end \
"(\$1 == chr && \$2 >= start && \$2 <= end){split(\$3,a,\"_\");print a[1],10^\$12,\$18}" | \
sort -k1,1 | \
join -12 -21 work/snp_pos - | \
awk -vOFS="\t" "{print \$2, \$3, \$4}"
) > METAL/{}.lz'
ls METAL/*-1.tbl.gz | \
sed 's|METAL/||g;s/-1.tbl.gz//g' | \
parallel -j1 -C' ' '
grep -w {} st.bed | \
awk -vOFS="\t" -vM=1000000 "{start=\$2-M;if(start<0) start=0;end=\$3+M;\$2=start;\$3=end};1" > st.tmp
read chrom start end gene prot < st.tmp
cd METAL
rm -f ld_cache.db
locuszoom --source 1000G_Nov2014 --build hg19 --pop EUR --metal {}.lz \
--plotonly --chr $chrom --start $start --end $end --no-date --rundir .
mv chr${chrom}_${start}-${end}.pdf {}.lz.pdf
pdftopng -r 300 {}.lz.pdf {}
mv {}-000001.png {}.lz-1.png
mv {}-000002.png {}.lz-2.png
cd -
'
export PATH=/data/jinhua/ImageMagick-7.0.8-22/bin:$PATH
convert OPG.lz-1.png -resize 130% OPG.lz-3.png
ln -sf /home/jinhua/INF/INF1.fp.pdf
pdftopng -r 300 -f 133 -l 133 INF1.fp.pdf 133
convert 133-000133.png -resize 150% 133.png
convert \( OPG.qq.png -append OPG.manhattan.png -append OPG.lz-3.png -append 133.png -append \) +append OPG-qml.png
}
function clumping()
{
echo "--> clumping"
export rt=$HOME/INF/METAL
ls METAL/*tbl.gz | \
sed 's/-1.tbl.gz//g' | \
xargs -l basename | \
parallel -j4 --env rt -C' ' '
if [ -f $rt/{}.clumped ]; then rm $rt/{}.clumped; fi
plink --bfile EUR \
--clump $rt/{}-1.tbl.gz \
--clump-snp-field MarkerName \
--clump-field P-value \
--clump-kb 1000 \
--clump-p1 5e-10 \
--clump-p2 0.01 \
--clump-r2 0.1 \
--mac 50 \
--out $rt/{}
'
(
grep CHR $rt/*.clumped | \
head -1
ls METAL/*-1.tbl.gz | \
sed 's|METAL/||g;s/-1.tbl.gz//g' | \
parallel -j1 --env rt -C' ' 'grep -H -v CHR $rt/{}.clumped | sed "s/.clumped://g"'
) | \
sed 's|'"$rt"'/||g;s/.clumped://g' | \
awk '(NF>1){$3="";print}' | \
awk '{$1=$1;if(NR==1)$1="prot";print}' > INF1.clumped
R --no-save -q <<\ \ END
require(gap); require(gap.examples)
clumped <- read.table("INF1.clumped",as.is=TRUE,header=TRUE)
hits <- merge(clumped[c("CHR","BP","SNP","prot")],inf1[c("prot","uniprot")],by="prot")
names(hits) <- c("prot","Chr","bp","SNP","uniprot")
cistrans <- cis.vs.trans.classification(hits,inf1,"uniprot")
cis.vs.trans <- with(cistrans,data)
write.table(cis.vs.trans,file="INF1.clumped.cis.vs.trans",row.names=FALSE,quote=TRUE)
cis <- subset(cis.vs.trans,cis.trans=="cis")["SNP"]
write.table(cis,file="INF1.clumped.cis",col.names=FALSE,row.names=FALSE,quote=FALSE)
sink("INF1.clumped.out")
with(cistrans,table)
sink()
with(cistrans,total)
pdf("INF1.circlize.pdf")
circos.cis.vs.trans.plot(hits="INF1.clumped",inf1,"uniprot")
dev.off()
END
}
function ma()
{
echo "--> .ma"
export rt=$HOME/INF/METAL
ls $rt/*.tbl.gz | \
sed 's/-1.tbl.gz\*//g' | \
xargs -l basename | \
parallel -j4 --env rt -C' ' '
(
echo SNP A1 A2 freq b se p N;
gunzip -c $rt/{}-1.tbl.gz | \
awk "(NR>1 && \$18>50) {print \$3, toupper(\$4), toupper(\$5), \$6, \$10, \$11, 10^\$12, \$18}"
) > work/{}.ma
'
}
sed 's/\t/\n/g' work/METAL.hdr| awk '{print "# " NR " " $1}'
# 1 Chromosome
# 2 Position
# 3 MarkerName
# 4 Allele1
# 5 Allele2
# 6 Freq1
# 7 FreqSE
# 8 MinFreq
# 9 MaxFreq
# 10 Effect
# 11 StdErr
# 12 log(P)
# 13 Direction
# 14 HetISq
# 15 HetChiSq
# 16 HetDf
# 17 logHetP
# 18 N
function cojo()
{
echo "--> COJO analysis"
export rt=$HOME/INF/METAL
ls METAL/*.tbl.gz | \
sed 's/-1.tbl.gz//g' | \
xargs -l basename | \
parallel -j2 --env rt -C' ' '
if [ -f $rt/{}.jma.cojo ]; then rm $rt/{}.jma.cojo $rt/{}.ldr.cojo; fi; \
gcta64 --bfile EUR --cojo-file $rt/{}.ma --cojo-slct --cojo-p 5e-10 --cojo-collinear 0.1 --cojo-wind 1000 \
--maf 0.01 --thread-num 2 --out $rt/{}
'
(
grep SNP $rt/*.jma.cojo | \
head -1
grep -v -w SNP $rt/*.jma.cojo
) | \
sed 's|'"$rt"'/||g;s/.jma.cojo:/\t/g' | \
awk -vOFS="\t" '{if(NR==1) $1="prot";print}' > INF1.jma
sed 's/Chr/CHR/g;s/bp/BP/g' INF1.jma > jma
R --no-save -q <<\ \ END
require(gap);require(gap.examples)
jma <- read.delim("jma")
ni <- dim(jma)[1]
primary <- dim(subset(jma,p <= 5e-10))[1]
secondary <- dim(subset(jma,p > 5e-10 & pJ <= 5e-10))[1]
print(cbind(ni,primary,secondary))
hits <- merge(jma[c("prot","CHR","BP","SNP")],inf1[c("prot","uniprot")],by="prot")
names(hits) <- c("prot","Chr","bp","SNP","uniprot")
cistrans <- cis.vs.trans.classification(hits,inf1,"uniprot")
cis.vs.trans <- with(cistrans,data)
write.table(cis.vs.trans,file="INF1.jma.cis.vs.trans",row.names=FALSE,quote=TRUE)
cis <- subset(cis.vs.trans,cis.trans=="cis")["SNP"]
write.table(cis,file="INF1.jma.cis",col.names=FALSE,row.names=FALSE,quote=FALSE)
sink("INF1.jma.out")
with(cistrans,table)
sink()
with(cistrans,total)
pdf("INF1.jma.pdf")
circos.cis.vs.trans.plot(hits="jma",inf1,"uniprot")
dev.off()
END
rm jma
}
#1 MarkerName
#2 Allele1
#3 Allele2
#4 Freq1
#5 FreqSE
#6 MinFreq
#7 MaxFreq
#8 Effect
#9 StdErr
#10 P-value
#11 Direction
#12 CHR
#13 POS
#14 WEIGHT
function fp()
{
(
cat work/METAL.hdr
# 1. PLINK --clumping. The default.
# 3. GCTA --cojo. Change Chr, Pos to CHR, BP as in 1.
# 2. R/gap/sentinels output. use SNPID or $4 below
# awk 'NR>1 {print $1,$4}' work/INF1_nold.sentinels | \
# parallel -j4 -C' ' 'zgrep -w -H {2} METAL/{1}-1.tbl.gz'
awk 'NR>1 {print $5,$6}' work/INF1.merge | \
parallel -j4 -C' ' 'zgrep -w -H {2} METAL/{1}-1.tbl.gz'
) | \
sed 's|METAL/||g;s/-1.tbl.gz//g' > INF1.tbl
cut -f3 INF1.tbl | \
awk 'NR>1' | \
sort -k1,1 | \
uniq | \
join -a2 -e "NA" work/INTERVAL.rsid - -o2.1,1.2> INF1.rsid
(
cat work/sumstats.hdr
awk 'NR>1' INF1.tbl | \
cut -f1,3,13 | \
awk '{split($1,a,":");print a[1],$2,$3}' | \
parallel -j4 -C' ' '
export direction=$(zgrep -w {2} METAL/{1}-1.tbl.gz | cut -f13)
let j=1
for i in $(grep "Input File" METAL/{1}-1.tbl.info | cut -d" " -f7)
do
export n=$(awk -vj=$j "BEGIN{split(ENVIRON[\"direction\"],a,\"\");print a[j]}")
if [ "$n" != "?" ]; then zgrep -H -w {2} $i; fi
let j=$j+1
done
'
) | \
sed 's|/data/jinhua/INF/sumstats||g;s/.gz//g' > INF1.all
if [ -f INF1.fp.log ]; then rm INF1.fp.log; fi
script INF1.fp.log
R -q --no-save <<\ \ END
require(gap)
t <- read.delim("INF1.tbl",as.is=TRUE)
tbl <- within(t, {
prot <- sapply(strsplit(Chromosome,":"),"[",1)
Chromosome <- sapply(strsplit(Chromosome,":"),"[",2)
})
a <- read.table("INF1.all",as.is=TRUE, header=TRUE)
all <- within(a, {
dir.study.prot <- sapply(strsplit(SNPID,":"),"[",1)
p1 <- sapply(strsplit(SNPID,":"),"[",2)
p2 <- sapply(strsplit(SNPID,":"),"[",3)
MarkerName <- paste(p1,p2,sep=":")
study <- sapply(strsplit(dir.study.prot,"/"),"[",2)
study.prot <- sapply(strsplit(dir.study.prot,"/"),"[",3)
substudy <- sapply(strsplit(study.prot,"[.]"),"[",1)
pos <- unlist(lapply(gregexpr("[.]",study.prot),"[",1))
prot <- substring(study.prot,pos+1)
})
droplist <- c("SNPID","dir.study.prot","p1","p2","pos","study.prot","substudy")
all <- all[setdiff(names(all),droplist)]
rsid <- read.table("INF1.rsid",as.is=TRUE,col.names=c("MarkerName","rsid"))
save(tbl,all,rsid,file="INF1.rda",version=2)
METAL_forestplot(tbl,all,rsid,"INF1.fp.pdf",width=8.75,height=5)
END
exit
(
echo prot MarkerName Q df p I2 lower.I2 upper.I2
grep I2 INF1.fp.log | \
awk '{gsub(/prot|=|MarkerName|Q|df|p|lower.I2|upper.I2|I2/,"");print}' | \
sed '1d'
) | sed 's/ //1;s/ / /g' > INF1.Q
}
function aild()
{
echo "--> approximately independent LD blocks"
awk 'NR>1{gsub(/chr/,"",$1);print}' tryggve/EURLD.bed > rlist-EURLD
export rt=$HOME/INF/AILD
ls $rt/METAL/*tbl.gz | \
sed 's/-1.tbl.gz//g' | \
xargs -l basename | \
parallel -j5 --env rt -C' ' '
plink --bfile EUR \
--clump $rt/METAL/{}-1.tbl.gz --clump-range rlist-EURLD --clump-range-border 250 \
--clump-snp-field MarkerName \
--clump-field P-value \
--clump-p1 5e-10 --clump-p2 0.01 --clump-r2 0.1 \
--mac 50 \
--out $rt/{}'
(
grep CHR $rt/*.clumped.ranges | \
head -1
ls METAL/*-1.tbl.gz | \
sed 's|METAL/||g;s/-1.tbl.gz//g' | \
parallel -j1 --env rt -C' ' 'grep -H -v CHR $rt/{}.clumped.ranges | sed "s/.clumped.ranges://g"'
) | \
sed 's|'"$rt"'/||g;s/.clumped://g' | \
awk '(NF>1){$3="";print}' | \
awk '{$1=$1;if(NR==1)$1="prot";print}' > INF1.ranges
awk '(NR>1){
chr=$1;
gsub(/chr/,"",chr);
flanking=($3-$2)/2/1000
centre=$2+flanking
print sprintf("%d %d %d %s", chr, centre, flanking, $4)
}' tryggve/EURLD.bed > rlist=EURLD.region
for prot in $(ls $rt/METAL/*tbl.gz | sed 's/-1.tbl.gz//g' | xargs -l basename)
do
export p=$prot
# bruteforceclumpingbyregion
cat rlist=EURLD.region | \
parallel -j8 --env p --env rt -C' ' '
gcta64 --bfile EUR --cojo-file $rt/METAL/$p.ma --cojo-slct --cojo-p 5e-10 --maf 0.0001 \
--extract-region-bp {1} {2} {3} --thread-num 3 --out $rt/LDBLOCK/$p-{4}'
(
cat $rt/LDBLOCK/${p}*.jma.cojo | head -1
awk "NR>1" $rt/LDBLOCK/${p}*.jma.cojo
) > $rt/${p}.jma
done
}
function cs_jma()
{
R -q --no-save <<END
require(gtx)
max1 <- function(bf) return(bf/max(bf, na.rm = TRUE))
t <- read.delim("INF1.jma",as.is=TRUE)
tbl <- within(t, {
BF.normal <- max1(abf.Wakefield(b, se, 5e-10))
BF.numeric <- max1(abf.normal(b, se, 5e-10))
BF.cs <- credset(BF.numeric)
})
tbl[c("prot","Chr","p","BF.numeric","BF.cs")]
END
}
function cs_tbl()
{
R -q --no-save <<END
require(gtx)
max1 <- function(bf) return(bf/max(bf, na.rm = TRUE))
t <- read.delim("INF1.tbl",as.is=TRUE)
tbl <- within(t, {
prot <- sapply(strsplit(Chromosome,":"),"[",1)
Chromosome <- sapply(strsplit(Chromosome,":"),"[",2)
BF.normal <- max1(abf.Wakefield(Effect, StdErr, 0.05))
BF.numeric <- max1(abf.normal(Effect, StdErr, 0.05))
BF.cs <- credset(BF.numeric)
})
tbl[c("prot","Chromosome","P.value","BF.numeric","BF.cs")]
END
}
function pve()
{
R -q --no-save -q <<END
t <- read.delim("INF1.tbl",as.is=TRUE)
tbl <- within(t, {
prot <- sapply(strsplit(Chromosome,":"),"[",1)
Chromosome <- sapply(strsplit(Chromosome,":"),"[",2)
chi2n <- (Effect/StdErr)^2/N
})
s <- with(tbl, aggregate(chi2n,list(prot),sum))
names(s) <- c("prot", "pve")
sd <- with(tbl, aggregate(chi2n,list(prot),sd))
names(sd) <- c("p1","sd")
m <- with(tbl, aggregate(chi2n,list(prot),length))
names(m) <- c("p2","m")
pve <- cbind(s,sd,m)
ord <- with(pve, order(pve))
sink("pve.dat")
print(pve[ord, c("prot","pve","sd","m")], row.names=FALSE)
sink()
png("pve.png", res=300, units="in", width=6, height=4)
np <- nrow(pve)
with(pve[ord,], {
plot(pve, cex=0.4, pch=16, xaxt="n", xlab="protein", ylab=expression(h^2))
xtick <- seq(1, np, by=1)
axis(side=1, at=xtick, labels = FALSE, lwd.tick=0.2)
text(x=xtick, par("usr")[3],labels = prot, srt = 75, pos = 1, xpd = TRUE, cex=0.3)
})
dev.off()
write.csv(tbl,file="INF1.csv",quote=FALSE,row.names=FALSE)
END
}
function mpfr()
{
echo "--> METAL results containing P-value=0"
awk '($5==0)' INF1.clumped | \
cut -d' ' -f1 |
uniq > INF1.z
cat INF1.z | \
parall -j2 --env rt '
(
export port={}
gunzip -c $rt/{}-1.tbl.gz | \
awk -vOFS="\t" "NR==1||\$12!=0"
gunzip -c $rt/{}-1.tbl.gz | \
awk -vOFS="\t" "(NR==1||\$12==0)" > {}.z
R --no-save -q <<\ \ \ \ END
prot <- Sys.getenv("prot")
metal <- read.delim(paste0(prot,".z"),as.is=TRUE)
library(Rmpfr)
metal <- within(metal,{P.value=format(2*pnorm(mpfr(-abs(z),100),lower.tail=TRUE,log.p=FALSE))})
write.table(metal,file=paste0(prot,".p"),sep=\"\\t\",row.names=FALSE,quote=FALSE)
END
awk "NR>1" {}.p
)'
}
function annotate()
{
echo "--> Variant annotation"
export annovar_home=/services/tools/annovar/2018apr16
export humandb=$annovar_home/humandb
export example=$annovar_home/example
$annovar_home/annotate_variation.pl --geneanno -otherinfo -buildver hg19 $example/ex1.avinput $humandb/ --outfile ex1
}
function nodup()
# notes from https://www.biostars.org/p/264584/
{
echo "--> remove duplicates"
export LC_ALL=C
(
grep '^#' input.vcf
grep -v "^#" input.vcf | \
sort -t $'\t' -k1,1 -k2,2n -k4,4 | \
awk -F '\t' 'BEGIN {prev="";} {key=sprintf("%s\t%s\t%s",$1,$2,$4);if(key==prev) next;print;prev=key;}'
)
}
function lambda()
{
echo "--> GC lambda"
(
ls METAL/*-1.tbl.gz | \
sed 's|METAL/||g;s/-1.tbl.gz//g' | \
parallel -j4 --env rt -C' ' '
gunzip -c METAL/{}-1.tbl.gz | \
cut -f3,10-12 | \
gzip -f > work/INF1.{}.p.gz
export protein={}
R --no-save -q <<\ \ END
protein <- Sys.getenv("protein")
gz <- gzfile(paste0("~/INF/work/INF1.",protein,".p.gz"))
p <- read.delim(gz,as.is=TRUE)
cat(protein,"snpStats.lambda=",snpStats::gq.chisq(with(p,(Effect/StdErr)^2)),"\n")
cat(protein,"GC.lambda=",gap::gc.lambda(with(p,Effect/StdErr),z=TRUE),"\n")
END
'
) > work/INF1.lambda.log
grep GC.lambda ~/INF/work/INF1.lambda.log | \
grep -v gc.lambda | \
sed 's/GC.lambda=//g' > work/INF1.lambda-z.dat
grep snpStats.lambda ~/INF/work/INF1.lambda.log | \
grep -v cat | \
sed 's/snpStats.lambda=//g' > work/INF1.lambda.dat
R --no-save -q <<\ \ END
t <- subset(read.table("~/INF/work/INF1.lambda.dat",as.is=TRUE,
col.names=c("prot","N","missing","lambda")),
!is.na(lambda)&prot!="BDNF")
summary(t)
ord <- with(t, order(lambda))
print(t[ord, c("prot","lambda")], row.names=FALSE)
pdf("~/INF/work/INF1.lambda.pdf", width=8, height=25)
par(mar=c(5,8,1,1))
np <- nrow(t)
with(t[ord,], {
xtick <- seq(1, np)
plot(lambda, xtick, cex=1.2, pch=16, xlim=c(0.99,1.03),
xlab=expression(lambda[GC]),axes=FALSE,ylab="Protein")
axis(2, at=xtick, labels = prot, line=-2, cex.axis=0.8, las=1)
axis(1)
})
dev.off()
END
}
$1