|
| 1 | +import argparse |
| 2 | +import json |
| 3 | +import logging |
| 4 | +import os |
| 5 | +import random |
| 6 | +from io import open |
| 7 | +import numpy as np |
| 8 | + |
| 9 | +from tensorboardX import SummaryWriter |
| 10 | +from tqdm import tqdm |
| 11 | +from bisect import bisect |
| 12 | +import yaml |
| 13 | +from easydict import EasyDict as edict |
| 14 | +import sys |
| 15 | + |
| 16 | +import torch |
| 17 | +import torch.nn.functional as F |
| 18 | +import torch.nn as nn |
| 19 | + |
| 20 | +from vilbert.task_utils import LoadDatasetEval, LoadLosses, ForwardModelsTrain, ForwardModelsVal, EvaluatingModel |
| 21 | +from vilbert.vilbert import VILBertForVLTasks, BertForMultiModalPreTraining |
| 22 | +from vilbert.basebert import BaseBertForVLTasks |
| 23 | + |
| 24 | +import vilbert.utils as utils |
| 25 | +import torch.distributed as dist |
| 26 | + |
| 27 | +logging.basicConfig( |
| 28 | + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
| 29 | + datefmt="%m/%d/%Y %H:%M:%S", |
| 30 | + level=logging.INFO, |
| 31 | +) |
| 32 | +logger = logging.getLogger(__name__) |
| 33 | + |
| 34 | +def main(): |
| 35 | + parser = argparse.ArgumentParser() |
| 36 | + |
| 37 | + parser.add_argument( |
| 38 | + "--bert_model", |
| 39 | + default="bert-base-uncased", |
| 40 | + type=str, |
| 41 | + help="Bert pre-trained model selected in the list: bert-base-uncased, " |
| 42 | + "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", |
| 43 | + ) |
| 44 | + parser.add_argument( |
| 45 | + "--from_pretrained", |
| 46 | + default="bert-base-uncased", |
| 47 | + type=str, |
| 48 | + help="Bert pre-trained model selected in the list: bert-base-uncased, " |
| 49 | + "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", |
| 50 | + ) |
| 51 | + parser.add_argument( |
| 52 | + "--output_dir", |
| 53 | + default="results", |
| 54 | + type=str, |
| 55 | + help="The output directory where the model checkpoints will be written.", |
| 56 | + ) |
| 57 | + parser.add_argument( |
| 58 | + "--config_file", |
| 59 | + default="config/bert_config.json", |
| 60 | + type=str, |
| 61 | + help="The config file which specified the model details.", |
| 62 | + ) |
| 63 | + parser.add_argument( |
| 64 | + "--no_cuda", action="store_true", help="Whether not to use CUDA when available" |
| 65 | + ) |
| 66 | + parser.add_argument( |
| 67 | + "--do_lower_case", |
| 68 | + default=True, |
| 69 | + type=bool, |
| 70 | + help="Whether to lower case the input text. True for uncased models, False for cased models.", |
| 71 | + ) |
| 72 | + parser.add_argument( |
| 73 | + "--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus" |
| 74 | + ) |
| 75 | + parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") |
| 76 | + parser.add_argument( |
| 77 | + "--fp16", |
| 78 | + action="store_true", |
| 79 | + help="Whether to use 16-bit float precision instead of 32-bit", |
| 80 | + ) |
| 81 | + parser.add_argument( |
| 82 | + "--loss_scale", |
| 83 | + type=float, |
| 84 | + default=0, |
| 85 | + help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" |
| 86 | + "0 (default value): dynamic loss scaling.\n" |
| 87 | + "Positive power of 2: static loss scaling value.\n", |
| 88 | + ) |
| 89 | + parser.add_argument( |
| 90 | + "--num_workers", type=int, default=16, help="Number of workers in the dataloader." |
| 91 | + ) |
| 92 | + parser.add_argument( |
| 93 | + "--save_name", |
| 94 | + default='', |
| 95 | + type=str, |
| 96 | + help="save name for training.", |
| 97 | + ) |
| 98 | + parser.add_argument( |
| 99 | + "--tasks", default='', type=str, help="1-2-3... training task separate by -" |
| 100 | + ) |
| 101 | + parser.add_argument( |
| 102 | + "--in_memory", default=False, type=bool, help="whether use chunck for parallel training." |
| 103 | + ) |
| 104 | + parser.add_argument( |
| 105 | + "--baseline", action="store_true", help="whether use single stream baseline." |
| 106 | + ) |
| 107 | + parser.add_argument( |
| 108 | + "--zero_shot", action="store_true", help="whether use single stream baseline." |
| 109 | + ) |
| 110 | + parser.add_argument( |
| 111 | + "--split", default="", type=str, help="which split to use." |
| 112 | + ) |
| 113 | + parser.add_argument( |
| 114 | + "--batch_size", default=1, type=int, help="which split to use." |
| 115 | + ) |
| 116 | + args = parser.parse_args() |
| 117 | + with open('vlbert_tasks.yml', 'r') as f: |
| 118 | + task_cfg = edict(yaml.safe_load(f)) |
| 119 | + |
| 120 | + random.seed(args.seed) |
| 121 | + np.random.seed(args.seed) |
| 122 | + torch.manual_seed(args.seed) |
| 123 | + |
| 124 | + if args.baseline: |
| 125 | + from pytorch_pretrained_bert.modeling import BertConfig |
| 126 | + else: |
| 127 | + from vilbert.vilbert import BertConfig |
| 128 | + |
| 129 | + task_names = [] |
| 130 | + for i, task_id in enumerate(args.tasks.split('-')): |
| 131 | + task = 'TASK' + task_id |
| 132 | + name = task_cfg[task]['name'] |
| 133 | + task_names.append(name) |
| 134 | + |
| 135 | + # timeStamp = '-'.join(task_names) + '_' + args.config_file.split('/')[1].split('.')[0] |
| 136 | + if '/' in args.from_pretrained: |
| 137 | + timeStamp = args.from_pretrained.split('/')[1] |
| 138 | + else: |
| 139 | + timeStamp = args.from_pretrained |
| 140 | + |
| 141 | + savePath = os.path.join(args.output_dir, timeStamp) |
| 142 | + |
| 143 | + config = BertConfig.from_json_file(args.config_file) |
| 144 | + bert_weight_name = json.load(open("config/" + args.bert_model + "_weight_name.json", "r")) |
| 145 | + |
| 146 | + if args.local_rank == -1 or args.no_cuda: |
| 147 | + device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
| 148 | + n_gpu = torch.cuda.device_count() |
| 149 | + else: |
| 150 | + torch.cuda.set_device(args.local_rank) |
| 151 | + device = torch.device("cuda", args.local_rank) |
| 152 | + n_gpu = 1 |
| 153 | + # Initializes the distributed backend which will take care of sychronizing nodes/GPUs |
| 154 | + torch.distributed.init_process_group(backend="nccl") |
| 155 | + |
| 156 | + logger.info( |
| 157 | + "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( |
| 158 | + device, n_gpu, bool(args.local_rank != -1), args.fp16 |
| 159 | + ) |
| 160 | + ) |
| 161 | + |
| 162 | + default_gpu = False |
| 163 | + if dist.is_available() and args.local_rank != -1: |
| 164 | + rank = dist.get_rank() |
| 165 | + if rank == 0: |
| 166 | + default_gpu = True |
| 167 | + else: |
| 168 | + default_gpu = True |
| 169 | + |
| 170 | + if default_gpu and not os.path.exists(savePath): |
| 171 | + os.makedirs(savePath) |
| 172 | + |
| 173 | + task_batch_size, task_num_iters, task_ids, task_datasets_val, task_dataloader_val \ |
| 174 | + = LoadDatasetEval(args, task_cfg, args.tasks.split('-')) |
| 175 | + |
| 176 | + num_labels = max([dataset.num_labels for dataset in task_datasets_val.values()]) |
| 177 | + |
| 178 | + config.fast_mode = True |
| 179 | + if args.zero_shot: |
| 180 | + model = BertForMultiModalPreTraining.from_pretrained(args.from_pretrained, config) |
| 181 | + else: |
| 182 | + model = VILBertForVLTasks.from_pretrained( |
| 183 | + args.from_pretrained, config, num_labels=num_labels, default_gpu=default_gpu |
| 184 | + ) |
| 185 | + |
| 186 | + task_losses = LoadLosses(args, task_cfg, args.tasks.split('-')) |
| 187 | + model.to(device) |
| 188 | + if args.local_rank != -1: |
| 189 | + try: |
| 190 | + from apex.parallel import DistributedDataParallel as DDP |
| 191 | + except ImportError: |
| 192 | + raise ImportError( |
| 193 | + "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." |
| 194 | + ) |
| 195 | + model = DDP(model, deay_allreduce=True) |
| 196 | + |
| 197 | + elif n_gpu > 1: |
| 198 | + model = nn.DataParallel(model) |
| 199 | + |
| 200 | + no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] |
| 201 | + |
| 202 | + print(" Num Iters: ", task_num_iters) |
| 203 | + print(" Batch size: ", task_batch_size) |
| 204 | + |
| 205 | + model.eval() |
| 206 | + # when run evaluate, we run each task sequentially. |
| 207 | + for task_id in task_ids: |
| 208 | + results = [] |
| 209 | + others = [] |
| 210 | + |
| 211 | + score_matrix = np.zeros((5000, 1000)) |
| 212 | + target_matrix = np.zeros((5000, 1000)) |
| 213 | + rank_matrix = np.ones((5000)) * 1000 |
| 214 | + count = 0 |
| 215 | + |
| 216 | + for i, batch in enumerate(task_dataloader_val[task_id]): |
| 217 | + batch = tuple(t.cuda(device=device, non_blocking=True) for t in batch) |
| 218 | + features, spatials, image_mask, question, input_mask, segment_ids, target, caption_idx, image_idx = batch |
| 219 | + |
| 220 | + if task_id in ['TASK3']: |
| 221 | + batch_size = features.size(0) |
| 222 | + features = features.squeeze(0) |
| 223 | + spatials = spatials.squeeze(0) |
| 224 | + image_mask = image_mask.squeeze(0) |
| 225 | + |
| 226 | + with torch.no_grad(): |
| 227 | + if args.zero_shot: |
| 228 | + _, _, vil_logit, _ = model(question, features, spatials, segment_ids, input_mask, image_mask) |
| 229 | + |
| 230 | + score_matrix[caption_idx, image_idx*500:(image_idx+1)*500] = torch.softmax(vil_logit, dim=1)[:,0].view(-1).cpu().numpy() |
| 231 | + target_matrix[caption_idx, image_idx*500:(image_idx+1)*500] = target.view(-1).float().cpu().numpy() |
| 232 | + |
| 233 | + else: |
| 234 | + _, vil_logit, _, _, _, _, _ = model(question, features, spatials, segment_ids, input_mask, image_mask) |
| 235 | + score_matrix[caption_idx, image_idx*500:(image_idx+1)*500] = vil_logit.view(-1).cpu().numpy() |
| 236 | + target_matrix[caption_idx, image_idx*500:(image_idx+1)*500] = target.view(-1).float().cpu().numpy() |
| 237 | + |
| 238 | + if image_idx.item() == 1: |
| 239 | + rank = np.where((np.argsort(-score_matrix[caption_idx]) == np.where(target_matrix[caption_idx]==1)[0][0]) == 1)[0][0] |
| 240 | + rank_matrix[caption_idx] = rank |
| 241 | + |
| 242 | + rank_matrix_tmp = rank_matrix[:caption_idx+1] |
| 243 | + r1 = 100.0 * np.sum(rank_matrix_tmp < 1) / len(rank_matrix_tmp) |
| 244 | + r5 = 100.0 * np.sum(rank_matrix_tmp < 5) / len(rank_matrix_tmp) |
| 245 | + r10 = 100.0 * np.sum(rank_matrix_tmp < 10) / len(rank_matrix_tmp) |
| 246 | + |
| 247 | + medr = np.floor(np.median(rank_matrix_tmp) + 1) |
| 248 | + meanr = np.mean(rank_matrix_tmp) + 1 |
| 249 | + print("%d Final r1:%.3f, r5:%.3f, r10:%.3f, mder:%.3f, meanr:%.3f" %(count, r1, r5, r10, medr, meanr)) |
| 250 | + |
| 251 | + results.append(np.argsort(-score_matrix[caption_idx]).tolist()[:20]) |
| 252 | + count += 1 |
| 253 | + |
| 254 | + |
| 255 | + r1 = 100.0 * np.sum(rank_matrix < 1) / len(rank_matrix) |
| 256 | + r5 = 100.0 * np.sum(rank_matrix < 5) / len(rank_matrix) |
| 257 | + r10 = 100.0 * np.sum(rank_matrix < 10) / len(rank_matrix) |
| 258 | + |
| 259 | + medr = np.floor( np.median(rank_matrix) + 1) |
| 260 | + meanr = np.mean(rank_matrix) + 1 |
| 261 | + |
| 262 | + print("************************************************") |
| 263 | + print("Final r1:%.3f, r5:%.3f, r10:%.3f, mder:%.3f, meanr:%.3f" %(r1, r5, r10, medr, meanr)) |
| 264 | + print("************************************************") |
| 265 | + |
| 266 | + if args.split: |
| 267 | + json_path = os.path.join(savePath, args.split) |
| 268 | + else: |
| 269 | + json_path = os.path.join(savePath, task_cfg[task_id]['val_split']) |
| 270 | + json.dump(results, open(json_path+ '_result.json', 'w')) |
| 271 | + json.dump(others, open(json_path+ '_others.json', 'w')) |
| 272 | + |
| 273 | +if __name__ == "__main__": |
| 274 | + |
| 275 | + main() |
0 commit comments