-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ti_model_gpu.py
312 lines (264 loc) · 13.8 KB
/
train_ti_model_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import math
from functools import partial
from itertools import product
import os
import torch
from torch import optim as optim, nn as nn
from torch.utils.data import DataLoader
import numpy as np
import wandb
from configs.config_for_ic_transinf import config as default_config
from datasets.data_generators import SymbolicDatasetForSampling, TransInfSeqGenerator
from input_embedders import GaussianEmbedderForOrdering, OmniglotEmbedder
from main_utils import log_att_weights
from models import Transformer
from utils import dotdict as dd, MyIterableDataset, update_nested_config
from plotting_utils import plot_and_log_matrix
torch.set_num_threads(4)
def main(config=default_config, wandb_proj='ic_transinf_sweep', seed=42):
# set random seed
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed) # If using CUDA
seed_config = {'seed': seed}
run = wandb.init(project=wandb_proj, config={**seed_config.copy(), **config.copy()})
cfg = config.copy()
sweep_params = dict(run.config) # Get sweep parameters from wandb
cfg = update_nested_config(cfg, sweep_params) # Merge sweep params into the default config
cfg = dd(cfg)
for k, v in cfg.items():
if isinstance(v, dict):
cfg[k] = dd(v)
print(f"Config parameters: {cfg}")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
metrics = {
'holdout_accuracy': [],
'predictions': [],
'loss': [],
'accuracies': []
}
cfg.seq.N = cfg.seq.ways * cfg.seq.shots
if cfg.model.prediction_mode == 'classify':
cfg.model.out_dim = cfg.data.L
else:
cfg.model.out_dim = 1 # for regression
### load or construct the dataset
dataset = SymbolicDatasetForSampling(cfg.data.K)
seqgen = TransInfSeqGenerator(dataset)
if cfg.seq.train_seq_type == 'order':
# todo: we can swap this for "in-weight" sequences with constant mapping
train_generator = partial(seqgen.get_fewshot_order_seq, cfg.seq.ways, cfg.seq.shots, mode='train',
train_distal=cfg.seq.include_distal_in_training)
holdout_generator = partial(seqgen.get_fewshot_order_seq, cfg.seq.ways, cfg.seq.shots, mode='test')
# fixme: this is just a placeholder for now
iwl_generator = seqgen.get_fewshot_order_seq(cfg.seq.ways, cfg.seq.shots)
elif cfg.seq.train_seq_type == 'ABBB':
train_generator = seqgen.get_AB_BB_seqs(cfg.seq.shots)
holdout_generator = seqgen.get_AB_BB_seqs(cfg.seq.shots)
iwl_generator = seqgen.get_AB_BB_seqs(cfg.seq.shots)
elif cfg.seq.train_seq_type == 'ABBA':
train_generator = seqgen.get_AB_BA_seqs(cfg.seq.shots, set='train')
holdout_generator = seqgen.get_AB_BA_seqs(cfg.seq.shots, set='test')
iwl_generator = seqgen.get_AB_BA_seqs(cfg.seq.shots, set='all')
else:
raise ValueError('Invalid sequence type: {}'.format(cfg.seq.seq_type))
iterdataset = MyIterableDataset(train_generator, holdout_generator, iwl_generator)
dataloader = DataLoader(iterdataset, batch_size=cfg.train.batch_size)
# prepare model
if cfg.data.type == 'gaussian':
input_embedder = GaussianEmbedderForOrdering(cfg, device)
elif cfg.data.type == 'omniglot':
input_embedder = OmniglotEmbedder(cfg, device)
else:
raise ValueError('Invalid data type: {}'.format(cfg.data.type))
model = Transformer(config=cfg.model, input_embedder=input_embedder).to(device) # my custom transformer encoder
optimizer = optim.Adam(model.parameters(), lr=cfg.train.learning_rate, weight_decay=cfg.train.w_decay)
if cfg.train.lr_scheduler == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg.train.niters, eta_min=.00001)
elif cfg.train.lr_scheduler == 'none':
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: 1.)
elif cfg.train.lr_scheduler == 'warmup_cosine':
scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: min((step + 1) / cfg.train.warmup_steps, 1.0) * 0.5 * (
1 + math.cos(step / cfg.train.niters * math.pi))
)
elif cfg.train.lr_scheduler == 'warmup_linear':
scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: min((step + 1) / cfg.train.warmup_steps, 1.0) * (1 - step / cfg.train.niters)
)
elif cfg.train.lr_scheduler == 'warmup_constant':
scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: min((step + 1) / cfg.train.warmup_steps, 1.0)
)
else:
raise ValueError('Invalid learning rate scheduler: {}'.format(cfg.train.lr_scheduler))
if cfg.model.prediction_mode == 'classify':
criterion = nn.CrossEntropyLoss()
elif cfg.model.prediction_mode == 'regress':
criterion = nn.MSELoss()
else:
raise ValueError('Invalid prediction mode: {}'.format(cfg.model.prediction_mode)
+ 'Valid options are: classify, regress')
steps_above_criterion = 0
iterdataset.set_mode('train')
iterator = iter(dataloader)
for n in range(cfg.train.niters):
model.train()
# batch = next(iterator)
batch = {k: v.to(device) for k, v in next(iterator).items()}
optimizer.zero_grad()
# for the transformer encoder, we need to reshape the input to (seq_len, batch_size, emb_dim)
y_hat, _ = model(batch)
if cfg.model.prediction_mode == 'classify':
label = batch['label'][:, -1].long()
label[label == -1] = 0
else:
label = batch['label'][:, -1].float().view(-1, 1)
loss = criterion(y_hat, label)
loss.backward()
optimizer.step()
scheduler.step()
if n % cfg.log.logging_interval == 0:
print(f'iteration {n}, loss {loss}')
if cfg.log.log_to_wandb:
# log current loss
wandb.log({'loss': loss.item(), 'iter': n})
# log current learning rate
for param_group in optimizer.param_groups:
wandb.log({'lr': param_group['lr'], 'iter': n})
# evaluate on holdout set (still with adjacent pairs)
iterdataset.set_mode('holdout')
iterator = iter(dataloader)
model.eval()
holdout_batch = {k: v.to(device) for k, v in next(iterator).items()}
if cfg.model.prediction_mode == 'classify':
label = holdout_batch['label'][:, -1].long()
label[label == -1] = 0
else:
label = holdout_batch['label'][:, -1].float().view(-1, 1)
holdout_loss, holdout_accuracy, out_dict_eval = \
eval_loss_and_accuracy(model, holdout_batch, label, criterion, cfg)
print(f'holdout loss: {holdout_loss}, holdout accuracy: {holdout_accuracy}')
if cfg.log.log_to_wandb:
wandb.log({'holdout_loss': holdout_loss.item(), 'holdout_accuracy': holdout_accuracy.item(), 'iter': n})
metrics['holdout_accuracy'].append(holdout_accuracy.item())
metrics['loss'].append(loss.item())
if cfg.save_weights:
log_att_weights(n, out_dict_eval, cfg)
if cfg.eval_at_all_distances:
correct_matrix, holdout_batch, pred_matrix, ranks = eval_at_all_distances(cfg, dataloader, device,
iterdataset,
model, n)
plot_and_log_matrix(cfg, correct_matrix, n, ranks, ranks, 'hot', 0, 1, 'Correct Matrix')
plot_and_log_matrix(cfg, pred_matrix, n, ranks, ranks, 'coolwarm', -1, 1, 'Pred Matrix')
# Initialize a dictionary to store the mean accuracies for each absolute distance
mean_accuracies = {}
mean_preds = {}
# Calculate the mean accuracy and output for each distance
for distance in range(-cfg.seq.ways + 1, cfg.seq.ways):
# Get the elements in the diagonal at the current absolute distance
diagonal_elements = torch.diagonal(correct_matrix, offset=distance)
diagonal_pred = torch.diagonal(pred_matrix, offset=distance)
# Calculate the mean accuracy
mean_accuracy = torch.mean(diagonal_elements)
mean_pred = torch.mean(diagonal_pred)
# Store the mean accuracy in the dictionary
mean_accuracies[distance] = mean_accuracy.item()
mean_preds[distance] = mean_pred.item()
metrics['accuracies'].append(mean_accuracies)
metrics['predictions'].append(mean_preds)
for distance, accuracy in mean_accuracies.items():
if cfg.log.log_to_wandb:
wandb.log({f"mean_accuracy_distance_{distance}": accuracy, 'iter': n})
wandb.log({f"mean_pred_distance_{distance}": mean_preds[distance], 'iter': n})
# calculate the induction strength of each L2 head
# this is the difference in attention weights from the query to the correct keys - the incorrect keys
calc_induction_strength = False
if calc_induction_strength:
calculate_induction_strength(cfg, holdout_batch, n, out_dict_eval)
if holdout_accuracy == 1.:
steps_above_criterion += 1
else:
steps_above_criterion = 0
if steps_above_criterion > cfg.train.steps_above_criterion:
print(f'holdout accuracy maximal for {steps_above_criterion} successive evaluations, stopping training')
break
iterdataset.set_mode('train')
iterator = iter(dataloader)
if cfg.save_model and n % cfg.log.checkpoint_interval == 0:
checkpoint_folder = os.path.join(cfg.log.checkpoint_dir, run.project, run.id)
if not os.path.exists(checkpoint_folder):
os.makedirs(checkpoint_folder)
model_path = os.path.join(checkpoint_folder, f"model_{n}.pt")
print(f"Saving model to {model_path}")
torch.save(model.state_dict(), model_path)
run.finish()
return metrics
def eval_at_all_distances(cfg, dataloader, device, iterdataset, model, n, get_hiddens=False):
holdout_batch = None
correct_matrix = torch.zeros((cfg.seq.ways, cfg.seq.ways))
pred_matrix = torch.zeros((cfg.seq.ways, cfg.seq.ways))
ranks = torch.arange(cfg.seq.ways)
model_activations = []
for i, j in product(ranks, ranks):
if i == j:
continue # only evaluate on off-diagonal elements
iterdataset.set_mode('holdout', set_query_ranks=(i, j))
iterator = iter(dataloader)
model.eval()
holdout_batch = {k: v.to(device) for k, v in next(iterator).items()}
y_hat, out_dict = model(holdout_batch, save_hidden_activations=get_hiddens)
model_activations.append(out_dict)
if cfg.model.prediction_mode == 'regress':
predicted_labels = torch.sign(y_hat.squeeze())
true_label_sign = torch.sign(holdout_batch['label'][:, -1].float())
accuracy = (predicted_labels == true_label_sign).float().mean()
output_mean = y_hat.detach().mean()
elif cfg.model.prediction_mode == 'classify':
predicted_labels = torch.argmax(y_hat, dim=1)
true_label = torch.where(holdout_batch['label'][:, -1] > 0, 1, 0)
accuracy = (predicted_labels == true_label).float().mean()
output_mean = y_hat[:, -1].detach().mean() # mean of the "higher than" prediction
else:
raise ValueError('Invalid prediction mode: {}'.format(cfg.model.prediction_mode)
+ 'Valid options are: classify, regress')
# log the accuracy and output mean
if cfg.log.log_to_wandb:
wandb.log({f'accuracy_{i}_{j}': accuracy.item(), 'iter': n})
wandb.log({f'output_mean_{i}_{j}': output_mean.item(), 'iter': n})
correct_matrix[i, j] = accuracy
pred_matrix[i, j] = output_mean
if get_hiddens:
return correct_matrix, holdout_batch, pred_matrix, ranks, model_activations
else:
return correct_matrix, holdout_batch, pred_matrix, ranks
def calculate_induction_strength(cfg, holdout_batch, n, out_dict_eval):
correct_ids = holdout_batch['label'][:, :-1] == holdout_batch['label'][:, -1].view(1, 128).T
for h in range(cfg.model.n_heads):
attn_weights = out_dict_eval[f'block_1']['weights'][:, h, :, :]
# only get every second column, starting from the second
query_to_label = attn_weights[:, -1, 1::2]
induction_strength = query_to_label[correct_ids].mean() - query_to_label[~correct_ids].mean()
if cfg.log.log_to_wandb:
wandb.log({f'induction_strength_head_{h}': induction_strength.item(), 'iter': n})
def eval_loss_and_accuracy(mod, inputs, labels, criterion, config):
y_hat, out_dict = mod(inputs, save_weights=config.save_weights)
if config.model.prediction_mode == 'regress':
labels = labels.float()
labels[labels == 0] = -1
elif config.model.prediction_mode == 'classify':
labels[labels == -1] = 0
loss = criterion(y_hat, labels)
if config.model.prediction_mode == 'classify':
predicted_labels = torch.argmax(y_hat, dim=1)
else:
predicted_labels = torch.sign(y_hat)
accuracy = (predicted_labels == labels).float().mean()
return loss, accuracy, out_dict
if __name__ == '__main__':
main(wandb_proj='in-context-gauss-forpaper')