-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model_concat_ti.py
224 lines (188 loc) · 9.24 KB
/
train_model_concat_ti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import math
from functools import partial
from itertools import product
import os
import yaml
import torch
from torch import optim as optim, nn as nn
from torch.utils.data import DataLoader
import numpy as np
import wandb
from configs.config_for_ic_transinf_concat import config as default_config
from datasets.concat_ti import generate_sequences_concat_ti, generate_eval_sequences_concat_ti
from input_embedders import GaussianEmbedderForOrdering, OmniglotEmbedder
from main_utils import log_att_weights
from models import Transformer
from utils import dotdict as dd, MyIterableDataset, update_nested_config
from plotting_utils import plot_and_log_matrix
torch.set_num_threads(4)
def main(config=default_config, wandb_proj='ic_transinf_sweep', seed=42):
# set random seed
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed) # If using CUDA
seed_config = {'seed': seed}
run = wandb.init(project=wandb_proj, config={**seed_config.copy(), **config.copy()})
cfg = config.copy()
sweep_params = dict(run.config) # Get sweep parameters from wandb
cfg = update_nested_config(cfg, sweep_params) # Merge sweep params into the default config
cfg = dd(cfg)
for k, v in cfg.items():
if isinstance(v, dict):
cfg[k] = dd(v)
print(f"Config parameters: {cfg}")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
metrics = {
'holdout_accuracy': [],
'predictions': [],
'loss': [],
'accuracies': []
}
cfg.seq.N = cfg.seq.ways * cfg.seq.shots
if cfg.model.prediction_mode == 'classify':
cfg.model.out_dim = cfg.data.L
else:
cfg.model.out_dim = 1 # for regression
### load or construct the dataset
model = Transformer(config=cfg.model).to(device) # my custom transformer encoder
optimizer = optim.Adam(model.parameters(), lr=cfg.train.learning_rate, weight_decay=cfg.train.w_decay)
if cfg.train.lr_scheduler == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg.train.niters, eta_min=.00001)
elif cfg.train.lr_scheduler == 'none':
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: 1.)
elif cfg.train.lr_scheduler == 'warmup_cosine':
scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: min((step + 1) / cfg.train.warmup_steps, 1.0) * 0.5 * (
1 + math.cos(step / cfg.train.niters * math.pi))
)
elif cfg.train.lr_scheduler == 'warmup_linear':
scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: min((step + 1) / cfg.train.warmup_steps, 1.0) * (1 - step / cfg.train.niters)
)
elif cfg.train.lr_scheduler == 'warmup_constant':
scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: min((step + 1) / cfg.train.warmup_steps, 1.0)
)
else:
raise ValueError('Invalid learning rate scheduler: {}'.format(cfg.train.lr_scheduler))
if cfg.model.prediction_mode == 'classify':
criterion = nn.CrossEntropyLoss()
elif cfg.model.prediction_mode == 'regress':
criterion = nn.MSELoss()
else:
raise ValueError('Invalid prediction mode: {}'.format(cfg.model.prediction_mode)
+ 'Valid options are: classify, regress')
steps_above_criterion = 0
for n in range(cfg.train.niters):
model.train()
num_items = torch.randint(4, 9, (1,)).item()
batch = generate_sequences_concat_ti(cfg.train.batch_size, num_items, cfg.data.D //2, leave_one_out=cfg.seq.leave_one_out)
batch = {k: v.to(device) for k, v in batch.items()}
optimizer.zero_grad()
# for the transformer encoder, we need to reshape the input to (seq_len, batch_size, emb_dim)
y_hat, _ = model(batch['example'])
if cfg.model.prediction_mode == 'classify':
label = batch['label'][:, -1].long()
label[label == -1] = 0
else:
label = batch['label'].view(-1, 1)
loss = criterion(y_hat, label)
loss.backward()
optimizer.step()
scheduler.step()
if n % cfg.log.logging_interval == 0:
print(f'iteration {n}, loss {loss}')
if cfg.log.log_to_wandb:
# log current loss
wandb.log({'loss': loss.item(), 'iter': n})
# log current learning rate
for param_group in optimizer.param_groups:
wandb.log({'lr': param_group['lr'], 'iter': n})
# log mean output value for training batch (to check for model bias)
output_mean = y_hat.detach().mean()
wandb.log({'output_mean_train': output_mean.item(), 'iter': n})
# evaluate the model on the holdout set
if cfg.eval_at_all_distances:
correct_matrix, holdout_batch, pred_matrix, ranks = eval_at_all_distances(cfg, device, model, n,
leave_one_out=cfg.seq.leave_one_out)
plot_and_log_matrix(cfg, correct_matrix, n, ranks, ranks, 'hot', 0, 1, 'Correct Matrix')
plot_and_log_matrix(cfg, pred_matrix, n, ranks, ranks, 'coolwarm', -1, 1, 'Pred Matrix')
if loss < 0.0001:
steps_above_criterion += 1
else:
steps_above_criterion = 0
if steps_above_criterion > cfg.train.steps_above_criterion:
print(f'holdout accuracy maximal for {steps_above_criterion} successive evaluations, stopping training')
break
if cfg.save_model and n % cfg.log.checkpoint_interval == 0:
checkpoint_folder = os.path.join(cfg.log.checkpoint_dir, run.project, run.id)
if not os.path.exists(checkpoint_folder):
os.makedirs(checkpoint_folder)
model_path = os.path.join(checkpoint_folder, f"model_{n}.pt")
print(f"Saving model to {model_path}")
torch.save(model.state_dict(), model_path)
# also save config as yaml
config_path = os.path.join(checkpoint_folder, 'config.yaml')
with open(config_path, 'w') as f:
yaml.dump(run.config, f)
run.finish()
return metrics
def eval_at_all_distances(cfg, device, model, n, get_hiddens=False, leave_one_out=True):
model.eval()
holdout_batch = None
correct_matrix = torch.zeros((cfg.seq.ways, cfg.seq.ways))
pred_matrix = torch.zeros((cfg.seq.ways, cfg.seq.ways))
ranks = torch.arange(cfg.seq.ways)
model_activations = []
for i, j in product(ranks, ranks):
if i == j:
continue # only evaluate on off-diagonal elements
holdout_batch = generate_eval_sequences_concat_ti(cfg.train.batch_size, cfg.seq.ways,
cfg.data.D // 2, query_pos=(i, j),
leave_one_out=leave_one_out)
holdout_batch = {k: v.to(device) for k, v in holdout_batch.items()}
y_hat, out_dict = model(holdout_batch['example'], save_hidden_activations=get_hiddens)
model_activations.append(out_dict)
if cfg.model.prediction_mode == 'regress':
predicted_labels = torch.sign(y_hat.squeeze())
true_label_sign = torch.sign(holdout_batch['label'].float())
accuracy = (predicted_labels == true_label_sign).float().mean()
output_mean = y_hat.detach().mean()
elif cfg.model.prediction_mode == 'classify':
predicted_labels = torch.argmax(y_hat, dim=1)
true_label = torch.where(holdout_batch['label'][:, -1] > 0, 1, 0)
accuracy = (predicted_labels == true_label).float().mean()
output_mean = y_hat[:, -1].detach().mean() # mean of the "higher than" prediction
else:
raise ValueError('Invalid prediction mode: {}'.format(cfg.model.prediction_mode)
+ 'Valid options are: classify, regress')
# log the accuracy and output mean
if cfg.log.log_to_wandb:
wandb.log({f'output_mean_{i}_{j}': output_mean.item(), 'iter': n})
correct_matrix[i, j] = accuracy
pred_matrix[i, j] = output_mean
if get_hiddens:
return correct_matrix, holdout_batch, pred_matrix, ranks, model_activations
else:
return correct_matrix, holdout_batch, pred_matrix, ranks
def eval_loss_and_accuracy(mod, inputs, labels, criterion, config):
y_hat, out_dict = mod(inputs, save_weights=config.save_weights)
if config.model.prediction_mode == 'regress':
labels = labels.float()
labels[labels == 0] = -1
elif config.model.prediction_mode == 'classify':
labels[labels == -1] = 0
loss = criterion(y_hat, labels)
if config.model.prediction_mode == 'classify':
predicted_labels = torch.argmax(y_hat, dim=1)
else:
predicted_labels = torch.sign(y_hat)
accuracy = (predicted_labels == labels).float().mean()
return loss, accuracy, out_dict
if __name__ == '__main__':
main(wandb_proj='in-context-concat')