forked from PlayVoice/whisper-vits-svc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_flist_config.py
125 lines (117 loc) · 3.6 KB
/
preprocess_flist_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import argparse
import re
from tqdm import tqdm
from random import shuffle
import json
config_template = {
"train": {
"log_interval": 200,
"eval_interval": 1000,
"seed": 1234,
"epochs": 10000,
"learning_rate": 1e-4,
"betas": [0.8, 0.99],
"eps": 1e-9,
"batch_size": 12,
"fp16_run": False,
"lr_decay": 0.999875,
"segment_size": 17920,
"init_lr_ratio": 1,
"warmup_epochs": 0,
"c_mel": 45,
"c_kl": 1.0,
"use_sr": True,
"max_speclen": 384,
"port": "8001"
},
"data": {
"training_files":"filelists/train.txt",
"validation_files":"filelists/val.txt",
"max_wav_value": 32768.0,
"sampling_rate": 32000,
"filter_length": 1280,
"hop_length": 320,
"win_length": 1280,
"n_mel_channels": 80,
"mel_fmin": 0.0,
"mel_fmax": None
},
"model": {
"inter_channels": 192,
"hidden_channels": 192,
"filter_channels": 768,
"n_heads": 2,
"n_layers": 6,
"kernel_size": 3,
"p_dropout": 0.1,
"resblock": "1",
"resblock_kernel_sizes": [3,7,11],
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
"upsample_rates": [10,8,2,2],
"upsample_initial_channel": 512,
"upsample_kernel_sizes": [16,16,4,4],
"n_layers_q": 3,
"use_spectral_norm": False,
"gin_channels": 256,
"ssl_dim": 256,
"n_speakers": 0,
},
"spk":{
"nen": 0,
"paimon": 1,
"yunhao": 2
}
}
pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
parser.add_argument("--source_dir", type=str, default="./dataset/32k", help="path to source dir")
args = parser.parse_args()
train = []
val = []
test = []
idx = 0
spk_dict = {}
spk_id = 0
for speaker in tqdm(os.listdir(args.source_dir)):
spk_dict[speaker] = spk_id
spk_id += 1
wavs = ["/".join([args.source_dir, speaker, i]) for i in os.listdir(os.path.join(args.source_dir, speaker))]
for wavpath in wavs:
if not pattern.match(wavpath):
print(f"warning:文件名{wavpath}中包含非字母数字下划线,可能会导致错误。(也可能不会)")
if len(wavs) < 10:
print(f"warning:{speaker}数据集数量小于10条,请补充数据")
wavs = [i for i in wavs if i.endswith("wav")]
shuffle(wavs)
train += wavs[2:-2]
val += wavs[:2]
test += wavs[-2:]
n_speakers = len(spk_dict.keys())*2
shuffle(train)
shuffle(val)
shuffle(test)
print("Writing", args.train_list)
with open(args.train_list, "w") as f:
for fname in tqdm(train):
wavpath = fname
f.write(wavpath + "\n")
print("Writing", args.val_list)
with open(args.val_list, "w") as f:
for fname in tqdm(val):
wavpath = fname
f.write(wavpath + "\n")
print("Writing", args.test_list)
with open(args.test_list, "w") as f:
for fname in tqdm(test):
wavpath = fname
f.write(wavpath + "\n")
config_template["model"]["n_speakers"] = n_speakers
config_template["spk"] = spk_dict
print("Writing configs/config.json")
with open("configs/config.json", "w") as f:
json.dump(config_template, f, indent=2)