-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_4cases.py
67 lines (56 loc) · 1.89 KB
/
plot_4cases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import matplotlib.pyplot as plt
# 设置基本参数
x = np.linspace(0, 10, 100)
mT = np.sin(x) + 1.5 # 生成一个正弦波形的掩蔽阈值
# 定义点的位置 (固定x位置为5)
x_point = 5
# 更新y和yhat为点的位置
# 1. y和yhat都大于masking threshold
y1_point = mT[50] + 0.5
yhat1_point = mT[50] + 0.25
# 2. yhat大于masking threshold而y小于masking threshold
y2_point = mT[50] - 0.5
yhat2_point = mT[50] + 0.5
# 3. y大于masking threshold而yhat小于masking threshold
y3_point = mT[50] + 0.5
yhat3_point = mT[50] - 0.5
# 4. y和yhat都小于masking threshold
y4_point = max(0.1, mT[50] - 0.3) # 防止y小于0,也不与yhat重合
yhat4_point = mT[50] - 0.5
# 重新绘图
# fig, axs = plt.subplots(2, 2, figsize=(14, 10))
fig, axs = plt.subplots(2, 2, figsize=(10, 8))
# 绘制每个子图
for i, ((y, yhat), ax) in enumerate(
zip(
[
(y1_point, yhat1_point),
(y2_point, yhat2_point),
(y3_point, yhat3_point),
(y4_point, yhat4_point),
],
axs.flatten(),
)
):
ax.plot(x, mT, label="Masking Threshold", color="green") # Masking threshold line
ax.plot(x_point, y, "bo", label="True Amplitude") # True point
ax.plot(x_point, yhat, "ro", label="Predicted Amplitude") # Predicted point
# 特别处理图2,距离是yhat到masking threshold的距离
# 对于图4,不画距离线,因为距离为0
if i == 1:
ax.plot(
[x_point, x_point], [yhat, mT[50]], "k--", label="Distance to Compute"
) # Distance line
elif i != 3:
ax.plot(
[x_point, x_point], [y, yhat], "k--", label="Distance to Compute"
) # Distance line
ax.set_xlim(4.5, 5.5)
ax.set_ylim(0, 1.25)
ax.set_title(f"Case {i+1}")
ax.legend()
plt.tight_layout()
# plt.title("Four Cases of Psychoacoustic Loss")
# plt.show()
plt.savefig("4cases.pdf")