-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_feats.py
313 lines (275 loc) · 8.84 KB
/
extract_feats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import librosa
import numpy as np
from tqdm import tqdm
import os
import pandas as pd
import h5py
import warnings
import multiprocessing
# from memory_profiler import profile, memory_usage
warnings.filterwarnings("ignore")
# Define the number of MFCCs to extract
def extract_mfcc(y, sr, n_mfcc):
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=n_mfcc)
return mfcc
def extract_mfcc_mean(mfcc):
mean_mean = np.mean(mfcc, axis=1)
return mean_mean
def extract_log_mel(y, sr, n_mels=128, fmin=0, fmax=8000, n_fft=512, hop_length=256):
mel_spec = librosa.feature.melspectrogram(
y,
sr=sr,
n_mels=n_mels,
fmin=fmin,
fmax=fmax,
n_fft=n_fft,
hop_length=hop_length,
)
log_mel_spec = librosa.power_to_db(mel_spec)
return log_mel_spec
def process_song(args):
(
row_idx,
mp3_path,
label,
total_len,
win_len,
step_len,
save_dir,
sr,
feature_type,
) = args
try:
y, _ = librosa.load(mp3_path, sr=sr)
padded_y = np.pad(y, (0, total_len * sr - len(y)), "constant")
num_segments = (len(padded_y) - win_len * sr) // (step_len * sr) + 1
for seg_idx in range(num_segments):
start = seg_idx * step_len * sr
end = start + win_len * sr
segment = padded_y[start:end]
if "log_mel" in feature_type:
log_mel_spec = extract_log_mel(segment, sr)
np.save(
os.path.join(
save_dir, "log_mel", f"log_mel_{row_idx}_{seg_idx}.npy"
),
log_mel_spec,
)
if "mfcc" in feature_type:
mfcc = extract_mfcc(segment, sr, n_mfcc=25)
np.save(
os.path.join(save_dir, "mfcc", f"mfcc_{row_idx}_{seg_idx}.npy"),
mfcc,
)
if "mfcc_mean" in feature_type:
mfcc = extract_mfcc(segment, sr, n_mfcc=25)
mfcc_mean = extract_mfcc_mean(mfcc)
np.save(
os.path.join(
save_dir, "mfcc_mean", f"mfcc_mean_{row_idx}_{seg_idx}.npy"
),
mfcc_mean,
)
if "wav" in feature_type:
np.save(
os.path.join(save_dir, "wav", f"wav_{row_idx}_{seg_idx}.npy"),
segment,
)
np.save(
os.path.join(save_dir, "label", f"label_{row_idx}_{seg_idx}.npy"), label
)
except Exception:
print("error1: {}".format(mp3_path))
def process_directory(
data_dir,
save_dir,
binary_data,
song_dir,
n_workers,
total_len,
win_len,
step_len,
sample_rate,
feature_type,
):
data = np.load(data_dir)
total_length = len(data)
print("feature_type: {}".format(feature_type))
if "mfcc" in feature_type:
os.makedirs(os.path.join(save_dir, "mfcc"), exist_ok=True)
if "mfcc_mean" in feature_type:
os.makedirs(os.path.join(save_dir, "mfcc_mean"), exist_ok=True)
if "log_mel" in feature_type:
os.makedirs(os.path.join(save_dir, "log_mel"), exist_ok=True)
print("aaaaaaaaaa")
if "wav" in feature_type:
os.makedirs(os.path.join(save_dir, "wav"), exist_ok=True)
os.makedirs(os.path.join(save_dir, "label"), exist_ok=True)
with multiprocessing.Pool(n_workers) as pool:
mp3_paths = []
labels = []
for mp3_path in data:
index, mp3_path = mp3_path.split("\t")
mp3_path = os.path.join(song_dir, mp3_path)
mp3_paths.append(mp3_path)
labels.append(binary_data[int(index)])
args = [
(
row_idx,
mp3_path,
label,
total_len,
win_len,
step_len,
save_dir,
sample_rate,
feature_type,
)
for row_idx, (mp3_path, label) in enumerate(zip(mp3_paths, labels))
]
list(
tqdm(
pool.imap(process_song, args),
total=total_length,
desc=f"Processing {data_dir}",
)
)
def preprocess_data_sota(
song_dir,
binary_dir,
tags_dir,
test_dir,
train_dir,
valid_dir,
save_base_dir,
n_workers=2,
win_len=30,
step_len=30,
total_len=30,
sample_rate=16000,
feature_type=["log_mel"],
):
os.makedirs(os.path.join(save_base_dir, "training"), exist_ok=True)
os.makedirs(os.path.join(save_base_dir, "validation"), exist_ok=True)
os.makedirs(os.path.join(save_base_dir, "testing"), exist_ok=True)
binary_data = np.load(binary_dir)
tags_data = np.load(tags_dir)
process_directory(
train_dir,
os.path.join(save_base_dir, "training"),
binary_data,
song_dir,
n_workers,
total_len,
win_len,
step_len,
sample_rate,
feature_type,
)
process_directory(
valid_dir,
os.path.join(save_base_dir, "validation"),
binary_data,
song_dir,
n_workers,
total_len,
win_len,
step_len,
sample_rate,
feature_type,
)
process_directory(
test_dir,
os.path.join(save_base_dir, "testing"),
binary_data,
song_dir,
n_workers,
total_len,
win_len,
step_len,
sample_rate,
feature_type,
)
def preprocess_data(
song_dir,
csv_dir,
save_base_dir,
n_workers=2,
win_len=10,
step_len=5,
total_len=30,
sample_rate=16000,
feature_type=["log_mel"],
):
os.makedirs(os.path.join(save_base_dir, "training"), exist_ok=True)
os.makedirs(os.path.join(save_base_dir, "validation"), exist_ok=True)
os.makedirs(os.path.join(save_base_dir, "testing"), exist_ok=True)
for feature in feature_type:
os.makedirs(os.path.join(save_base_dir, "training", feature), exist_ok=True)
os.makedirs(os.path.join(save_base_dir, "validation", feature), exist_ok=True)
os.makedirs(os.path.join(save_base_dir, "testing", feature), exist_ok=True)
for save_dir in [
os.path.join(save_base_dir, "training"),
os.path.join(save_base_dir, "validation"),
os.path.join(save_base_dir, "testing"),
]:
os.makedirs(os.path.join(save_dir, "label"), exist_ok=True)
total_length = total_len * sample_rate
window_length = win_len * sample_rate
step = step_len * sample_rate
df = pd.read_csv(csv_dir, sep="\t")
df = df.iloc[:, -2:]
pool = multiprocessing.Pool(processes=n_workers)
args_list = []
for row_idx, row in tqdm(df.iterrows(), total=df.shape[0]):
try:
mp3_path = row["mp3_path"]
first_char = mp3_path[0]
if first_char in "0123456789ab":
save_dir = os.path.join(save_base_dir, "training")
elif first_char == "c":
save_dir = os.path.join(save_base_dir, "validation")
elif first_char in "def":
save_dir = os.path.join(save_base_dir, "testing")
else:
continue
audio_path = (
os.path.splitext(os.path.join(song_dir, row["mp3_path"]))[0] + ".mp3"
)
label = np.array(list(row["features_id"].split("_")[0]), dtype=int)
args_list.append(
(
row_idx,
audio_path,
label,
total_len,
win_len,
step_len,
save_dir,
sample_rate,
feature_type,
)
)
except Exception:
audio_path = os.path.join(song_dir, row["mp3_path"])[:-4] + ".mp3"
print("error2: {}".format(audio_path))
with tqdm(total=len(args_list)) as pbar:
for _ in pool.imap_unordered(process_song, args_list):
pbar.update()
pool.close()
pool.join()
print("done")
def create_hdf5_dataset(data_dir, save_dir, dataset_name):
# Get a list of filenames sorted alphabetically
filenames = sorted(os.listdir(data_dir))
# Determine the shape of the data
shape = np.load(os.path.join(data_dir, filenames[0])).shape
dataset_shape = (len(filenames),) + shape
# Create the HDF5 file
with h5py.File(os.path.join(save_dir, f"{dataset_name}.h5"), "w") as f:
dataset = f.create_dataset(dataset_name, shape=dataset_shape, dtype="float32")
# Iterate over the files and add the data to the dataset
for i, filename in enumerate(tqdm(filenames)):
data = np.load(os.path.join(data_dir, filename))
dataset[i] = data
return dataset_shape