-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_mean.py
36 lines (26 loc) · 1.09 KB
/
create_mean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import h5py
import numpy as np
input_filepath = "preprocessed/10/training/log_mel.h5"
output_filepath = "preprocessed/10/training/log_mel_mean.h5"
chunk_size = 1000
def process_chunk(data_chunk):
return np.mean(data_chunk, axis=-1)
with h5py.File(input_filepath, "r") as input_file:
data = input_file["log_mel"]
num_samples = data.shape[0]
# Calculate the number of chunks to process
num_chunks = (num_samples + chunk_size - 1) // chunk_size
log_mel_mean = []
# Process data in chunks
for i in range(num_chunks):
start_idx = i * chunk_size
end_idx = min(start_idx + chunk_size, num_samples)
chunk = data[start_idx:end_idx]
log_mel_mean_chunk = process_chunk(chunk)
log_mel_mean.append(log_mel_mean_chunk)
# Concatenate results from all chunks
log_mel_mean = np.concatenate(log_mel_mean, axis=0)
# Save calculated mean values to a new file
with h5py.File(output_filepath, "w") as output_file:
output_file.create_dataset("log_mel_mean", data=log_mel_mean)
print(f"Mean values calculated and saved to '{output_filepath}'")