forked from epiforecasts/scoringutils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
73 lines (73 loc) · 2.64 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
Package: scoringutils
Title: Utilities for Scoring and Assessing Predictions
Version: 1.0.0
Language: en-GB
Authors@R: c(
person(given = "Nikos",
family = "Bosse",
role = c("aut", "cre"),
email = "[email protected]",
comment = c(ORCID = "https://orcid.org/0000-0002-7750-5280")),
person(given = "Sam Abbott",
role = c("aut"),
email = "[email protected]",
comment = c(ORCID = "0000-0001-8057-8037")),
person(given = "Hugo",
family = "Gruson",
role = c("aut"),
email = "[email protected]",
comment = c(ORCID = "https://orcid.org/0000-0002-4094-1476")),
person(given = "Johannes Bracher",
role = c("ctb"),
email = "[email protected]",
comment = c(ORCID = "0000-0002-3777-1410")),
person("Sebastian", "Funk",
email = "[email protected]",
role = c("ctb")))
Description:
Provides a collection of metrics and proper scoring rules
(Tilmann Gneiting & Adrian E Raftery (2007)
<doi:10.1198/016214506000001437>, Jordan, A., Krüger, F., & Lerch, S. (2019)
<doi:10.18637/jss.v090.i12>) within a consistent framework for
evaluation, comparison and visualisation of forecasts.
In addition to proper scoring rules, functions are provided to assess
bias, sharpness and calibration
(Sebastian Funk, Anton Camacho, Adam J. Kucharski, Rachel Lowe, Rosalind
M. Eggo, W. John Edmunds (2019) <doi:10.1371/journal.pcbi.1006785>) of
forecasts.
Several types of predictions (e.g. binary, discrete, continuous) which may
come in different formats (e.g. forecasts represented by predictive samples
or by quantiles of the predictive distribution) can be evaluated.
Scoring metrics can be used either through a convenient data.frame format,
or can be applied as individual functions in a vector / matrix format.
All functionality has been implemented with a focus on performance and is
robustly tested.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
Imports:
data.table,
ggdist (>= 3.1.0),
ggplot2,
methods,
rlang,
scoringRules,
stats
Suggests:
kableExtra,
knitr,
magrittr,
rmarkdown,
testthat,
vdiffr
Config/Needs/website:
r-lib/pkgdown,
amirmasoudabdol/preferably
Config/testthat/edition: 3
RoxygenNote: 7.1.2
URL: https://epiforecasts.io/scoringutils/, https://github.com/epiforecasts/scoringutils
BugReports: https://github.com/epiforecasts/scoringutils/issues
VignetteBuilder: knitr
Depends:
R (>= 3.5)
Roxygen: list(markdown = TRUE)