-
Notifications
You must be signed in to change notification settings - Fork 0
/
densenet161_pytorch.txt
660 lines (660 loc) · 34.7 KB
/
densenet161_pytorch.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
<bound method Module.named_modules of DenseNet (
(features): Sequential (
(conv0): Conv2d(3, 96, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(norm0): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True)
(relu0): ReLU (inplace)
(pool0): MaxPool2d (size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1))
(denseblock1): _DenseBlock (
(denselayer1): _DenseLayer (
(norm.1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(96, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer2): _DenseLayer (
(norm.1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(144, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer3): _DenseLayer (
(norm.1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer4): _DenseLayer (
(norm.1): BatchNorm2d(240, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(240, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer5): _DenseLayer (
(norm.1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(288, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer6): _DenseLayer (
(norm.1): BatchNorm2d(336, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(336, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(transition1): _Transition (
(norm): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True)
(relu): ReLU (inplace)
(conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(pool): AvgPool2d (size=2, stride=2, padding=0, ceil_mode=False, count_include_pad=True)
)
(denseblock2): _DenseBlock (
(denselayer1): _DenseLayer (
(norm.1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer2): _DenseLayer (
(norm.1): BatchNorm2d(240, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(240, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer3): _DenseLayer (
(norm.1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(288, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer4): _DenseLayer (
(norm.1): BatchNorm2d(336, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(336, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer5): _DenseLayer (
(norm.1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer6): _DenseLayer (
(norm.1): BatchNorm2d(432, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(432, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer7): _DenseLayer (
(norm.1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(480, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer8): _DenseLayer (
(norm.1): BatchNorm2d(528, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(528, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer9): _DenseLayer (
(norm.1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(576, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer10): _DenseLayer (
(norm.1): BatchNorm2d(624, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(624, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer11): _DenseLayer (
(norm.1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(672, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer12): _DenseLayer (
(norm.1): BatchNorm2d(720, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(720, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(transition2): _Transition (
(norm): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True)
(relu): ReLU (inplace)
(conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(pool): AvgPool2d (size=2, stride=2, padding=0, ceil_mode=False, count_include_pad=True)
)
(denseblock3): _DenseBlock (
(denselayer1): _DenseLayer (
(norm.1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer2): _DenseLayer (
(norm.1): BatchNorm2d(432, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(432, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer3): _DenseLayer (
(norm.1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(480, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer4): _DenseLayer (
(norm.1): BatchNorm2d(528, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(528, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer5): _DenseLayer (
(norm.1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(576, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer6): _DenseLayer (
(norm.1): BatchNorm2d(624, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(624, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer7): _DenseLayer (
(norm.1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(672, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer8): _DenseLayer (
(norm.1): BatchNorm2d(720, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(720, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer9): _DenseLayer (
(norm.1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer10): _DenseLayer (
(norm.1): BatchNorm2d(816, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(816, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer11): _DenseLayer (
(norm.1): BatchNorm2d(864, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(864, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer12): _DenseLayer (
(norm.1): BatchNorm2d(912, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(912, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer13): _DenseLayer (
(norm.1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(960, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer14): _DenseLayer (
(norm.1): BatchNorm2d(1008, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1008, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer15): _DenseLayer (
(norm.1): BatchNorm2d(1056, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1056, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer16): _DenseLayer (
(norm.1): BatchNorm2d(1104, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1104, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer17): _DenseLayer (
(norm.1): BatchNorm2d(1152, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1152, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer18): _DenseLayer (
(norm.1): BatchNorm2d(1200, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1200, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer19): _DenseLayer (
(norm.1): BatchNorm2d(1248, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1248, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer20): _DenseLayer (
(norm.1): BatchNorm2d(1296, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1296, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer21): _DenseLayer (
(norm.1): BatchNorm2d(1344, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1344, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer22): _DenseLayer (
(norm.1): BatchNorm2d(1392, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1392, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer23): _DenseLayer (
(norm.1): BatchNorm2d(1440, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1440, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer24): _DenseLayer (
(norm.1): BatchNorm2d(1488, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1488, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer25): _DenseLayer (
(norm.1): BatchNorm2d(1536, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1536, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer26): _DenseLayer (
(norm.1): BatchNorm2d(1584, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1584, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer27): _DenseLayer (
(norm.1): BatchNorm2d(1632, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1632, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer28): _DenseLayer (
(norm.1): BatchNorm2d(1680, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1680, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer29): _DenseLayer (
(norm.1): BatchNorm2d(1728, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1728, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer30): _DenseLayer (
(norm.1): BatchNorm2d(1776, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1776, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer31): _DenseLayer (
(norm.1): BatchNorm2d(1824, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1824, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer32): _DenseLayer (
(norm.1): BatchNorm2d(1872, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1872, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer33): _DenseLayer (
(norm.1): BatchNorm2d(1920, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1920, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer34): _DenseLayer (
(norm.1): BatchNorm2d(1968, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1968, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer35): _DenseLayer (
(norm.1): BatchNorm2d(2016, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(2016, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer36): _DenseLayer (
(norm.1): BatchNorm2d(2064, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(2064, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(transition3): _Transition (
(norm): BatchNorm2d(2112, eps=1e-05, momentum=0.1, affine=True)
(relu): ReLU (inplace)
(conv): Conv2d(2112, 1056, kernel_size=(1, 1), stride=(1, 1), bias=False)
(pool): AvgPool2d (size=2, stride=2, padding=0, ceil_mode=False, count_include_pad=True)
)
(denseblock4): _DenseBlock (
(denselayer1): _DenseLayer (
(norm.1): BatchNorm2d(1056, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1056, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer2): _DenseLayer (
(norm.1): BatchNorm2d(1104, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1104, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer3): _DenseLayer (
(norm.1): BatchNorm2d(1152, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1152, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer4): _DenseLayer (
(norm.1): BatchNorm2d(1200, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1200, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer5): _DenseLayer (
(norm.1): BatchNorm2d(1248, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1248, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer6): _DenseLayer (
(norm.1): BatchNorm2d(1296, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1296, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer7): _DenseLayer (
(norm.1): BatchNorm2d(1344, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1344, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer8): _DenseLayer (
(norm.1): BatchNorm2d(1392, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1392, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer9): _DenseLayer (
(norm.1): BatchNorm2d(1440, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1440, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer10): _DenseLayer (
(norm.1): BatchNorm2d(1488, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1488, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer11): _DenseLayer (
(norm.1): BatchNorm2d(1536, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1536, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer12): _DenseLayer (
(norm.1): BatchNorm2d(1584, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1584, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer13): _DenseLayer (
(norm.1): BatchNorm2d(1632, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1632, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer14): _DenseLayer (
(norm.1): BatchNorm2d(1680, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1680, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer15): _DenseLayer (
(norm.1): BatchNorm2d(1728, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1728, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer16): _DenseLayer (
(norm.1): BatchNorm2d(1776, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1776, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer17): _DenseLayer (
(norm.1): BatchNorm2d(1824, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1824, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer18): _DenseLayer (
(norm.1): BatchNorm2d(1872, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1872, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer19): _DenseLayer (
(norm.1): BatchNorm2d(1920, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1920, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer20): _DenseLayer (
(norm.1): BatchNorm2d(1968, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(1968, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer21): _DenseLayer (
(norm.1): BatchNorm2d(2016, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(2016, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer22): _DenseLayer (
(norm.1): BatchNorm2d(2064, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(2064, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer23): _DenseLayer (
(norm.1): BatchNorm2d(2112, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(2112, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer24): _DenseLayer (
(norm.1): BatchNorm2d(2160, eps=1e-05, momentum=0.1, affine=True)
(relu.1): ReLU (inplace)
(conv.1): Conv2d(2160, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm.2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)
(relu.2): ReLU (inplace)
(conv.2): Conv2d(192, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(norm5): BatchNorm2d(2208, eps=1e-05, momentum=0.1, affine=True)
)
(classifier): Linear (2208 -> 365)
)>