-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot.py
53 lines (47 loc) · 1.91 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import sys
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
file_name = 'win_stats'
def main(win_stats, epsilon_start, min_epsilon, epsilon_episodes, count):
epsilons = np.linspace(epsilon_start, min_epsilon, epsilon_episodes + 1)
win_stat_count = win_stats.shape[0]
epsilon_count = epsilons.shape[0]
if epsilon_count < win_stat_count:
epsilons = np.append(epsilons, np.full(win_stat_count - epsilon_count,
min_epsilon))
win_stat_means = np.mean(win_stats.reshape(-1, count), axis=1)
epsilon_means = np.mean(epsilons.reshape(-1, count), axis=1)
episodes = np.arange(count, win_stat_count + 1, count)
plt.plot(episodes, win_stat_means)
plt.plot(episodes, epsilon_means)
plt.axhline(0.5, alpha=0.7, linestyle='dotted', color='grey')
plt.legend(['Win rate', r'$\epsilon$', '50 %'])
plt.xlabel('Episodes')
plt.ylabel('Means of wins over ' + str(count)
+ r' episodes each and $\epsilon$ values')
plt.title('Win rate during learning')
plt.savefig(file_name + '.png', bbox_inches='tight')
plt.savefig(file_name + '.pdf', bbox_inches='tight')
# plt.show()
if __name__ == '__main__':
if len(sys.argv) < 2:
print('Usage: plot.py win_stats.npy [epsilon_start=1] '
'[min_epsilon=0.1] [epsilon_episodes=6000] '
'[number of wins to average over=100]')
else:
win_stats = np.load(sys.argv[1], allow_pickle=False)
if len(sys.argv) > 4:
epsilon_start = float(sys.argv[2])
min_epsilon = float(sys.argv[3])
epsilon_episodes = int(sys.argv[4])
else:
epsilon_start = 1
min_epsilon = 0.1
epsilon_episodes = 6000
if len(sys.argv) > 5:
count = int(sys.argv[5])
else:
count = 100
main(win_stats, epsilon_start, min_epsilon, epsilon_episodes, count)