-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaffine_dynamics.jl
247 lines (200 loc) · 8.4 KB
/
affine_dynamics.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
using Flux
using LinearAlgebra
using Zygote
using ReverseDiff
function f_batch(A::Union{AbstractMatrix,AbstractArray}, x::AbstractArray)
isa(A, AbstractMatrix) && return batched_mul(A, x)
@assert size(x, 2) == size(A, 3)
@assert length(size(A)) == 3
x = reshape(x, (size(x, 1), 1,size(x, 2)))
return dropdims(A ⊠ x, dims=2)
end
function g_batch(B::Union{AbstractMatrix,AbstractArray}, u::AbstractArray)
isa(B, AbstractMatrix) && return batched_mul(B, u)
@assert size(u, 2) == size(B, 3)
@assert length(size(B)) == 3
u = reshape(u, (size(u, 1), 1,size(u, 2)))
return dropdims(B ⊠ u, dims=2)
end
function affine_dyn_batch(A::Union{AbstractMatrix,AbstractArray}, x::AbstractArray, B::Union{AbstractMatrix,AbstractArray}, u::AbstractArray;Δ=nothing)
f_x = f_batch(A, x)
g_u = g_batch(B, u)
ẋ = f_x + g_u
isnothing(Δ) && (Δ = zeros(size(ẋ)))
return ẋ + Δ
end
function forward_invariance_func(ϕ::Chain, A::Union{AbstractMatrix,AbstractArray}, x::AbstractArray, B::Union{AbstractMatrix,AbstractArray}, u::AbstractArray; α=0,Δ=nothing)
state_dim, batchsize = size(x)
ẋ = affine_dyn_batch(A, x, B, u;Δ=Δ)
ẋ = reshape(ẋ, (state_dim, 1, batchsize))
_, ∇ϕ = Zygote.pullback(ϕ, x)
∇ϕ_x = ∇ϕ(ones(size(x)))[1] ./ state_dim
∇ϕ_x = reshape(∇ϕ_x, (1, state_dim, batchsize))
ϕ̇ = reshape(batched_mul(∇ϕ_x, ẋ), size(ϕ(x)))
l = ϕ̇ .+ α .* ϕ(x)
return l
end
function forward_invariance_func_noAB(ϕ::Chain, x::AbstractArray, ẋ::AbstractArray; α=0)
state_dim, batchsize = size(x)
ẋ = reshape(ẋ, (state_dim, 1, batchsize))
_, ∇ϕ = Zygote.pullback(ϕ, x)
∇ϕ_x = ∇ϕ(ones(size(x)))[1] ./ state_dim
∇ϕ_x = reshape(∇ϕ_x, (1, state_dim, batchsize))
ϕ̇ = reshape(batched_mul(∇ϕ_x, ẋ), size(ϕ(x)))
l = ϕ̇ .+ α .* ϕ(x)
return l
end
function loss_safe_set(ϕ::Chain, x::AbstractArray,y_init::AbstractArray)
return Flux.Losses.mse(max.(0, (2 .* y_init .- 1) .* ϕ(x)), 0)
end
function loss_naive_safeset(ϕ::Chain, x::AbstractArray,y_init::AbstractArray)
y_init = y_init[1, :] # safe: 1; unsafe: 0
loss = relu((2 .* y_init .- 1) .* ϕ(x)[1, :] .+ 1e-6)
return sum(loss) / size(loss)[end]
end
function loss_regularization(ϕ::Chain, x::AbstractArray,y_init::AbstractArray)
y_init = y_init[1, :] # safe: 1; unsafe: 0
loss = sigmoid_fast((2 .* y_init .- 1) .* ϕ(x)[1, :])
return sum(loss) / size(loss)[end]
end
function loss_forward_invariance(ϕ::Chain, A::Union{AbstractMatrix,AbstractArray}, x::AbstractArray, B::Union{AbstractMatrix,AbstractArray}, u::AbstractArray, y_cbf::AbstractArray; α=0,Δ=nothing)
l = forward_invariance_func(ϕ, A, x, B, u; α,Δ=Δ)
return Flux.Losses.mse(max.(0, l), 0)
end
function loss_naive_fi(ϕ::Chain, A::Union{AbstractMatrix,AbstractArray}, x::AbstractArray, B::Union{AbstractMatrix,AbstractArray}, u::AbstractArray, y_init::AbstractArray; use_pgd=false, use_adv = false, α=0, lr =1, num_iter=10,ϵ=0.1,Δ=nothing)
y_init = y_init[1, :]
index = findall(x->x==1, y_init)
size(index)[1] == 0 && return 0
x = x[:, index]
u = u[:, index]
if !isnothing(Δ)
A = A[:,:, index]
B = B[:,:, index]
Δ = Δ[:, index]
end
@assert α==0
mask = abs.(ϕ(x)) .< ϵ
index = findall(x->x==true, mask[1,:])
size(index)[1] == 0 && return 0
x = x[:, index]
u = u[:, index]
if !isnothing(Δ)
A = A[:,:, index]
B = B[:,:, index]
Δ = Δ[:, index]
end
if use_adv
X_lcoal = [Hyperrectangle(x[:, i], radius_hyperrectangle(X) ./ 20) for i=1:size(x)[2]]
x = pgd_find_x_notce(ϕ, A, x, B, u, X_lcoal; α = α,Δ=Δ)
end
use_pgd && (u = pgd_find_u_notce(ϕ, A, x, B, u, U; α = α, lr =lr, num_iter=num_iter,Δ=Δ))
loss = relu(forward_invariance_func(ϕ, A, x, B, u; α,Δ=Δ) .+ 1e-6)
return sum(loss) / size(loss)[end]
end
function get_min_u_noAB_vertices(ϕ::Chain, x::AbstractArray, u::AbstractArray, U::Hyperrectangle,y_init::AbstractArray, dyn_model; use_pgd=false, α=0,use_adv = false, ϵ=0.1, same_x=false)
if !same_x
y_init = y_init[1, :]
index = findall(x->x==1, y_init)
size(index)[1] == 0 && return nothing, nothing
x = x[:, index]
u = u[:, index]
@assert α==0
mask = abs.(ϕ(x)) .< ϵ
index = findall(x->x==true, mask[1,:])
size(index)[1] == 0 && return nothing, nothing
x = x[:, index]
u = u[:, index]
end
u_cand = vertices_list(U)
ẋ_batch = zeros(size(x))
for i in 1:size(x, 2)
min_ϕ̇ = Inf
min_ẋ = nothing
for j in 1:length(u_cand)
cand_ẋ = dyn_model(x[:, i], u_cand[j])
if min_ϕ̇ > forward_invariance_func_noAB(ϕ,x[:, i:i],cand_ẋ; α)[1, 1]
min_ϕ̇ = forward_invariance_func_noAB(ϕ,x[:, i:i],cand_ẋ; α)[1, 1]
min_ẋ = cand_ẋ
end
end
ẋ_batch[:, i] .= min_ẋ
end
return x,ẋ_batch
end
function loss_naive_fi_noAB(ϕ::Chain, x::AbstractMatrix, ẋ_batch::AbstractMatrix; α=0)
loss = relu(forward_invariance_func_noAB(ϕ,x,ẋ_batch; α) .+ 1e-6)
return sum(loss) / size(loss)[end]
end
function verification_forward(ϕ::Chain, A::Union{AbstractMatrix,AbstractArray}, x::AbstractArray, B::Union{AbstractMatrix,AbstractArray}, u_0::AbstractArray, U::Hyperrectangle; α=0, lr = 1,num_iter=10,Δ=nothing)
original_condition = (forward_invariance_func(ϕ, A, x, B, u_0; α,Δ=Δ) .≤ 0)
u = pgd_find_u_notce(ϕ, A, x, B, u_0, U; α = α, lr =lr, num_iter=num_iter,Δ=Δ)
return original_condition, forward_invariance_func(ϕ, A, x, B, u; α,Δ=Δ) .≤ 0, u, forward_invariance_func(ϕ, A, x, B, u; α,Δ=Δ)
end
function pgd_find_u_notce(ϕ::Chain, A::Union{AbstractMatrix,AbstractArray}, x::AbstractArray, B::Union{AbstractMatrix,AbstractArray}, u_0::AbstractArray, U::Hyperrectangle; α=0, lr = 1,num_iter=10,Δ=nothing)
u = u_0
for i in 1:num_iter
function l_min_u_function(u1::AbstractArray)
return forward_invariance_func(ϕ, A, x, B, u1; α,Δ=Δ)
end
val, ∇l = Zygote.pullback(l_min_u_function, u)
state_dim, batchsize = size(u)
∇l_u = ∇l(ones(size(u)))[1] ./ state_dim
∇l_u = reshape(∇l_u, (state_dim, batchsize))
u_old = copy(u)
u = u - lr .* ∇l_u
u = low(U) .+ relu(u .- low(U))
u = high(U) .- relu(high(U) .- u)
if u == u_old
break
end
end
return u
end
function pgd_find_x_notce(ϕ::Chain, A::Union{AbstractMatrix,AbstractArray}, x_0::AbstractArray, B::Union{AbstractMatrix,AbstractArray}, u::AbstractArray, X::Vector; α=0, lr = 0.01,num_iter=10,Δ=nothing)
x = x_0
low_X = [low(X[i]) for i = 1:length(X)]
high_X = [high(X[i]) for i = 1:length(X)]
low_X = reduce(hcat, low_X)
high_X = reduce(hcat, high_X)
for i in 1:num_iter
function l_max_x_function(x1::AbstractArray)
return forward_invariance_func(ϕ, A, x1, B, u; α,Δ=Δ)
end
val, ∇l = Zygote.pullback(l_max_x_function, x)
state_dim, batchsize = size(x)
∇l_x = ∇l(ones(size(x)))[1] ./ state_dim
∇l_x = reshape(∇l_x, (state_dim, batchsize))
x_old = copy(x)
x = x + lr .* ∇l_x
x = low_X .+ relu(x .- low_X)
x = high_X .- relu(high_X .- x)
if x == x_old
break
end
end
return x
end
function pgd_find_x_notce_noAB(ϕ::Chain, x_0::AbstractArray, X::Vector,ẋ::AbstractArray; α=0, lr = 0.01,num_iter=10)
x = x_0
low_X = [low(X[i]) for i = 1:length(X)]
high_X = [high(X[i]) for i = 1:length(X)]
low_X = reduce(hcat, low_X)
high_X = reduce(hcat, high_X)
for i in 1:num_iter
function l_max_x_function(x1::AbstractArray)
return forward_invariance_func_noAB(ϕ, x1,ẋ; α)
end
val, ∇l = Zygote.pullback(l_max_x_function, x)
state_dim, batchsize = size(x)
∇l_x = ∇l(ones(size(x)))[1] ./ state_dim
∇l_x = reshape(∇l_x, (state_dim, batchsize))
x_old = copy(x)
x = x + lr .* ∇l_x
x = low_X .+ relu(x .- low_X)
x = high_X .- relu(high_X .- x)
if x == x_old
break
end
end
return x
end