-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinfer_style.py
259 lines (219 loc) · 10.5 KB
/
infer_style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright 2024 InstantX Team. All rights reserved.
import os
import cv2
import numpy as np
from PIL import Image
import diffusers
from diffusers.utils import load_image
from diffusers import DDIMScheduler, ControlNetModel
from transformers import CLIPVisionModelWithProjection
from transformers import AutoProcessor, Blip2ForConditionalGeneration
import torch
import torchvision
from torchvision import transforms
from src.eunms import Model_Type, Scheduler_Type
from src.utils.enums_utils import get_pipes
from src.config import RunConfig
from inversion import run as invert
from CSD_Score.model import CSD_CLIP, convert_state_dict
from pipeline_controlnet_sd_xl_img2img import StableDiffusionXLControlNetImg2ImgPipeline
def generate_caption(
image: Image.Image,
text: str = None,
decoding_method: str = "Nucleus sampling",
temperature: float = 1.0,
length_penalty: float = 1.0,
repetition_penalty: float = 1.5,
max_length: int = 50,
min_length: int = 1,
num_beams: int = 5,
top_p: float = 0.9,
) -> str:
if text is not None:
inputs = processor(images=image, text=text, return_tensors="pt").to("cuda", torch.float16)
generated_ids = model.generate(**inputs)
else:
inputs = processor(images=image, return_tensors="pt").to("cuda", torch.float16)
generated_ids = model.generate(
pixel_values=inputs.pixel_values,
do_sample=decoding_method == "Nucleus sampling",
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
top_p=top_p,
)
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return result
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
if __name__ == "__main__":
if not os.path.exists("results"):
os.makedirs("results")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# blip2
MODEL_ID = "Salesforce/blip2-flan-t5-xl"
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = Blip2ForConditionalGeneration.from_pretrained(MODEL_ID, device_map="cuda", load_in_8bit=False, torch_dtype=torch.float16)
model.eval()
# image dirs
style_image_dir = "./data/style/93.jpg"
style_image = Image.open(style_image_dir).convert("RGB")
content_image_dir = "./data/content/20.jpg"
content_image = Image.open(content_image_dir).convert("RGB")
content_image = resize_img(content_image)
content_image_prompt = generate_caption(content_image)
print(content_image_prompt)
# init style clip model
clip_model = CSD_CLIP("vit_large", "default", model_path="./CSD_Score/models/ViT-L-14.pt")
model_path = "./CSD_Score/models/checkpoint.pth"
checkpoint = torch.load(model_path, map_location="cpu")
state_dict = convert_state_dict(checkpoint['model_state_dict'])
clip_model.load_state_dict(state_dict, strict=False)
clip_model = clip_model.to(device)
# preprocess
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
preprocess = transforms.Compose([
transforms.Resize(size=224, interpolation=torchvision.transforms.functional.InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
# computer style embedding
style_image_ = preprocess(Image.open(style_image_dir).convert("RGB")).unsqueeze(0).to(device) # torch.Size([1, 3, 224, 224])
with torch.no_grad():
_, __, style_output = clip_model(style_image_)
# computer content embedding
content_image_ = preprocess(Image.open(content_image_dir).convert("RGB")).unsqueeze(0).to(device) # torch.Size([1, 3, 224, 224])
with torch.no_grad():
_, content_output, __ = clip_model(content_image_)
# inversion
model_type = Model_Type.SDXL
scheduler_type = Scheduler_Type.DDIM
pipe_inversion, pipe_inference = get_pipes(model_type, scheduler_type, device=device, model_name="./checkpoints/sdxlUnstableDiffusers_v8HeavensWrathVAE")
config = RunConfig(model_type = model_type,
num_inference_steps = 50,
num_inversion_steps = 50,
num_renoise_steps = 1,
scheduler_type = scheduler_type,
perform_noise_correction = False,
seed = 7865
)
# obtain content latent
_, inv_latent, _, all_latents = invert(content_image,
content_image_prompt,
config,
pipe_inversion=pipe_inversion,
pipe_inference=pipe_inference,
do_reconstruction=False) # torch.Size([1, 4, 128, 128])
rec_image = pipe_inference(image = inv_latent,
prompt = content_image_prompt,
denoising_start=0.00001,
num_inference_steps = config.num_inference_steps,
guidance_scale = 1.0).images[0]
rec_image.save(f"./results/result_rec.jpg")
del pipe_inversion, pipe_inference, all_latents
torch.cuda.empty_cache()
control_type = "tile"
if control_type == "tile":
# condition image
cond_image = load_image(content_image_dir)
cond_image = resize_img(cond_image)
controlnet_path = "./controlnet-tile-sdxl-1.0"
controlnet = ControlNetModel.from_pretrained(
controlnet_path,
torch_dtype=torch.float16,
use_safetensors=True,
).to(device)
elif control_type == "canny":
# condition image
input_image_cv2 = cv2.imread(content_image_dir)
input_image_cv2 = np.array(input_image_cv2)
input_image_cv2 = cv2.Canny(input_image_cv2, 100, 200)
input_image_cv2 = input_image_cv2[:, :, None]
input_image_cv2 = np.concatenate([input_image_cv2, input_image_cv2, input_image_cv2], axis=2)
anyline_image = Image.fromarray(input_image_cv2)
cond_image = resize_img(anyline_image)
# load ControlNet
controlnet_path = "./checkpoints/MistoLine"
controlnet = ControlNetModel.from_pretrained(
controlnet_path,
torch_dtype=torch.float16,
variant="fp16",
).to(device)
# load pipeline
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"./checkpoints/IP-Adapter", subfolder="models/image_encoder", torch_dtype=torch.float16
).to(device)
pipe_inference = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
"./checkpoints/sdxlUnstableDiffusers_v8HeavensWrathVAE",
controlnet=controlnet,
clip_model=clip_model,
image_encoder=image_encoder,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
).to(device)
pipe_inference.scheduler = DDIMScheduler.from_config(pipe_inference.scheduler.config) # works the best
pipe_inference.unet.enable_gradient_checkpointing()
# load multiple IPA
pipe_inference.load_ip_adapter(
["./checkpoints/IP-Adapter",
"./checkpoints/IP-Adapter",
],
subfolder=["sdxl_models", "sdxl_models"],
weight_name=[
"ip-adapter_sdxl_vit-h.safetensors",
"ip-adapter_sdxl_vit-h.safetensors",
],
image_encoder_folder=None,
)
scale_global = 0.2 # high semantic content decrease style effect, lower it can benefit from textual or material style
scale_style = {
"up": {"block_0": [0.0, 1.2, 0.0]},
}
pipe_inference.set_ip_adapter_scale([scale_global, scale_style])
# infer
images = pipe_inference(
prompt=content_image_prompt, # prompt used for inversion
negative_prompt="lowres, low quality, worst quality, deformed, noisy, blurry",
ip_adapter_image=[content_image, style_image], # IPA for semantic content, InstantStyle for style
guidance_scale=5, # high cfg increase style
num_inference_steps=config.num_inference_steps, # config.num_inference_steps achieves the best
image=inv_latent, # init content latent
#image=None, # init latent from noise
control_image=cond_image, # ControlNet for spatial structure
controlnet_conditioning_scale=0.4, # high control cond decrease style
denoising_start=0.0001,
style_embeddings_clip=style_output, # style guidance embedding
content_embeddings_clip=content_output, # content guidance embedding
style_guidance_scale=0, # enable style_guidance when style_guidance_scale > 0, cost high RAM, need optimization here
content_guidance_scale=0, # enable content_guidance when style_guidance_scale > 0, cost high RAM, need optimization here
).images
# computer style similarity score
generated_image = preprocess(images[0]).unsqueeze(0).to(device)
_, content_output1, style_output1 = clip_model(generated_image)
style_sim = (style_output@style_output1.T).detach().cpu().numpy().mean()
content_sim = (content_output@content_output1.T).detach().cpu().numpy().mean()
print(style_sim, content_sim)
images[0].save(f"./results/result_{style_sim}_{content_sim}.jpg")