-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmscoco.py
232 lines (186 loc) · 8.7 KB
/
mscoco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import sys
import json
import h5py
from blocks.utils import shared_floatx_nans
from blocks.utils import dict_union, dict_subset
from blocks.roles import WEIGHT, add_role
from contrib.imagenet import ImagenetModel
from workspace import *
def imagenet_model_func(matlab_filepath):
vgg_vd_model = ImagenetModel(matlab_filepath)
input_var = tensor.tensor4("input")
output_1k = vgg_vd_model.layers[0].apply(input_var)
for layer in vgg_vd_model.layers[1:]:
output_1k = layer.apply(output_1k)
# operable_model = Model(output_1k)
# return operable_model.get_theano_function(allow_input_downcast=True)
return theano.function([input_var], output_1k, allow_input_downcast=True)
# return vgg_vd_model
class CocoHD5Dataset(Dataset):
"""Very simple interface to the mscoco dataset"""
def __init__(self, coco_hd5_path, subset=None):
hd5_file = h5py.File(coco_hd5_path)
self.images = hd5_file['image']
self.sequences = hd5_file['sequence']
if subset:
self.images = self.images[subset]
self.sequences = self.sequences[subset]
self._sources = tuple(hd5_file.keys())
self.axis_labels = None
@property
def num_examples(self):
return len(self.images)
def get_data(self, state=None, request=None):
if state is not None or request is None:
raise ValueError
return (self.images[request].astype("f"), self.sequences[request].astype("i").T)
def mscoco_stream(dataset, batch_size):
batch_scheme = SequentialScheme(dataset.num_examples, batch_size=batch_size)
just_stream = DataStream.default_stream(dataset, iteration_scheme=batch_scheme)
return just_stream
# return Mapping(just_stream, transpose_stream)
def mscoco_read_vocab(f_path):
coco_json = json.load(open(f_path))
return coco_json['ix_to_word']
class ImageCaptionAttention(AbstractAttention):
@application(outputs=["attended"], inputs=["attended", 'preprocessed_attended'])
def take_glimpses(self, attended, preprocessed_attended=None, **kwargs):
return attended
def initial_glimpses(self, batch_size, attended):
return attended
class ContextSimpleRecurrent(SimpleRecurrent):
"""very simple recurrent that's context-aware"""
@recurrent(sequences=['inputs', 'mask'], states=['states'],
outputs=['states'], contexts=['context'])
def apply(self, inputs, states, mask=None, context=None):
"""Same as SimpleRecurrent.apply except with an additional argument:
context : :class:`~tensor.TensorVariable`
Not actually used here, but needed for readout to take it into account
"""
next_states = inputs + tensor.dot(states, self.W)
next_states = self.children[0].apply(next_states)
if mask:
next_states = (mask[:, None] * next_states +
(1 - mask[:, None]) * states)
return next_states
def get_dim(self, name):
if name == "context":
# this is a dirty hack!
return self.parents[0].parents[0].readout.merge.input_dims['context']
return super(ContextSimpleRecurrent, self).get_dim(name)
class ContextRecurrent(SimpleRecurrent):
"""Fully context-aware recurrent brick"""
# todo:
# - _allocate and _initialize need to introduce another weight matrix
# - get dim is now nice
# - apply only needs to add the context
def _allocate(self):
super(ContextRecurrent, self)._allocate()
R = shared_floatx_nans((1000, self.dim), name="R")
self.parameters.append(R)
add_role(self.parameters[2], WEIGHT)
def _initialize(self):
self.weights_init.initialize(self.R, self.rng)
super(ContextRecurrent, self)._initialize()
@property
def R(self):
return self.parameters[2]
@recurrent(sequences=['inputs', 'mask'], states=['states'],
outputs=['states'], contexts=['context'])
def apply(self, inputs, states, context, mask=None):
"""Same as SimpleRecurrent.apply except with an additional argument:
context : :class:`~tensor.TensorVariable`
"""
next_states = inputs + tensor.dot(states, self.W) + tensor.dot(context, self.R)
next_states = self.children[0].apply(next_states)
if mask:
next_states = (mask[:, None] * next_states +
(1 - mask[:, None]) * states)
return next_states
def get_dim(self, name):
if name == "context":
# extending dim behavior to "context" name
return 1000
return super(ContextRecurrent, self).get_dim(name)
def train_rnn():
# coco_hd5_path = "/media/data/image_classification/coco.hdf5"
coco_hd5_path = "/projects/korpora/mscoco/coco.hdf5"
coco_dataset = CocoHD5Dataset(coco_hd5_path)
stream = mscoco_stream(coco_dataset, 15)
# coco_hd5_path = "/media/data/image_classification/cocotalk.json"
coco_json_path = '/projects/korpora/mscoco/coco/cocotalk.json'
coco_vocab = mscoco_read_vocab(coco_json_path)
# zeros don't correspond to actual words, so we need to make room for one more index
vocab_size = len(coco_vocab) + 1
hidden_size = 512
feedback = LookupFeedback(vocab_size,
feedback_dim=vocab_size,
name='feedback')
emitter = SoftmaxEmitter(name="emitter")
# merger = Merge(input_names=["states", "context"], input_dims={"context": 1000})
readout = Readout(readout_dim=vocab_size,
# source_names=["states", "context"],
source_names=["states"],
# merge=merger,
emitter=emitter,
feedback_brick=feedback,
name='readout')
transition = ContextRecurrent(name="transition",
dim=hidden_size,
activation=Tanh())
generator = SequenceGenerator(readout,
transition,
weights_init=IsotropicGaussian(0.01),
biases_init=Constant(0),
name='generator')
generator.initialize()
sequences = tensor.imatrix('sequence')
images = tensor.matrix('image')
cost = generator.cost(sequences, context=images)
graph = ComputationGraph(cost)
# Cost optimization
optimizer = GradientDescent(cost=cost,
parameters=graph.parameters,
step_rule=Adam())
# Monitoring
# monitor = DataStreamMonitoring(variables=[cost],
# data_stream=stream,
# prefix="mscoco")
monitor_freq = 10000
gradient = aggregation.mean(optimizer.total_gradient_norm)
gradient_monitoring = TrainingDataMonitoring([gradient, cost],
every_n_batches=monitor_freq)
# Main Loop
save_path = 'mscoco-rnn-{}-context.tar'.format(hidden_size)
# save_path = "test-context.tar"
main_loop = MainLoop(model=Model(cost),
data_stream=stream,
algorithm=optimizer,
extensions=[FinishAfter(after_n_epochs=5),
gradient_monitoring,
Timing(after_epoch=True),
Printing(on_interrupt=True,
every_n_batches=monitor_freq),
Checkpoint(save_path,
every_n_epochs=1,
on_interrupt=True,
after_training=True)
# Plot("Example Plot", channels=[['test_cost_simple_xentropy', "test_error_rate"]])
])
main_loop.run()
if __name__ == '__main__':
# This works!
# matlab_filepath = "/projects/korpora/mscoco/coco/imagenet-vgg-verydeep-16.mat"
# cnn_func = imagenet_model_func(matlab_filepath)
# cocotalk_h5_path = "/projects/korpora/mscoco/coco/cocotalk.h5"
# cocotalk_h5 = h5py.File(cocotalk_h5_path)
# test_images = cocotalk_h5['images'][:2]
rnn_tar_file = 'mscoco-rnn-512-2.tar'
rnn_tar_path = "/home/kurenkov/models/" + rnn_tar_file
trained_main_loop = load_tar(rnn_tar_path)
# is this correct?
generator = trained_main_loop.model.get_top_bricks()[0]
generating = generator.generate(n_steps=5, batch_size=1, iterate=True)
sampler = ComputationGraph(generating).get_theano_function()
print(sampler.inputs)
# print(cnn_func(test_images))