-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathastro_func.cpp
165 lines (120 loc) · 5.25 KB
/
astro_func.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include <iostream>
#include <fstream>
#include <cmath>
#include <cstring>
#include "stars.h"
#include <cstdlib>
using namespace std;
//--------------------------------------------------------------//
// Функция, которая возвращает температуру неба в направлении
// детектируемого пульсара на частоте 1.4 МГц.
// Основана на работе Dinnat et al., 2010
// Аргументы функции - галактическая долгота и широта пульсара
//--------------------------------------------------------------//
bool isNaN(double x) {
return x != x;
}
struct decl {
double quant;
};
double T_sky (double l, double b, TMap * T_copy) {
double alphaf, deltaf, res;
double alpha_int, alpha_frac, delta_int, delta_frac;
double N_deg;
double A_g [3][3], ecv[3], gal[3];
decl Tb;
//ifstream in_dec ("declination.bin", ios::binary);
//ifstream in_ras ("right_ascension.bin", ios::binary);
//ifstream in_Tb ("TbGal_tot_CasA1pix.bin", ios::binary);
A_g [0][0] = -0.0548755601367195;
A_g [0][1] = +0.49410942801324;
A_g [0][2] = -0.86766614895829;
A_g [1][0] = -0.87343709025327;
A_g [1][1] = -0.4448296298016944;
A_g [1][2] = -0.19807637370567;
A_g [2][0] = -0.48383501554722;
A_g [2][1] = +0.74698224450044;
A_g [2][2] = +0.4559837761713720;
//double l = 20./180.*pi, b = 50./180.*pi;
//cout<<l<<"\t"<<b<<endl;
gal[0] = cos(b)*cos(l);
gal[1] = cos(b)*sin(l);
gal[2] = sin(b);
memset(ecv, 0, sizeof(ecv));
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++) {
ecv[i] += A_g[i][j]*gal[j];
}
deltaf = asin(ecv[2]);
alphaf = atan2(ecv[1], ecv[0]);
deltaf*=180./pi;
alphaf*=180./pi;
if (alphaf<0) {
alphaf+=360;
}
//cout<<alphaf<<"\t"<<deltaf<<endl;
alphaf*=4.;
deltaf+=90.;
deltaf*=4.;
alpha_frac = modf (alphaf, &alpha_int);
delta_frac = modf (deltaf, &delta_int);
N_deg = 721*alpha_int;
N_deg += delta_int;
// in_dec.seekg(sizeof(tmp)*N_deg, ios_base::beg);
// in_dec.read((char*) &delta, sizeof(tmp));
// in_ras.seekg(sizeof(tmp)*N_deg, ios_base::beg);
// in_ras.read((char*) &alpha, sizeof(tmp));
// in_Tb.seekg(sizeof(Tb)*N_deg, ios_base::beg);
// in_Tb.read((char*) &Tb, sizeof(Tb));
res = T_copy->get_Tb(N_deg);
//cout<<l<<"\t"<<b<<"\t"<<res<<endl;
//res = Tb.quant;
return res;
}
double S_min (double l, double b, float sm, double dist, double w, double P, float DM, TMap * T_copy) {
double res, DM_0_parkes, DM_0_swinburne, delta_beam, tau_scatt;
double W_l_parkes, W_l_swinburne, S_min_Parkes, S_min_Swinburne;
double N_ch = 96, t_sampl_parkes = 250e-6, t_sampl_swinburne = 125e-6, nu = 1.4e3, delta_nu = 288e6; // nu and delta_nu should be measured in MHz in principle
double tau_sampl_parkes = 1.5*t_sampl_parkes, tau_sampl_swinburne = 1.5*t_sampl_swinburne;
double beta = 1.5, sigma = 8, T_rec = 21, Tb_sky, G = 0.64, N_p = 2, t_int_parkes = 2100.0, t_int_swinburne = 265.0; // G = 0.64 K/Jy
// tau_scatt = 1000.*pow(sm/292., 1.2)*dist*pow(nu, -4.4);
//if (dist<20)
//cout<<"DM - "<<DM<<", dist - "<<dist<<", DM/dist - "<<DM/dist<<endl;
//------------------------------------------------------//
// Lorimer et al. ArXiv:0607640
//------------------------------------------------------//
// tau_scatt = 0.154*log10(DM)+1.07*pow(log10(DM), 2.) - 7.;
// tau_scatt = pow(10., tau_scatt)/1.e3;
//------------------------------------------------------//
//------------------------------------------------------//
// Bhat, Cordes, Camilo et al. (2004)
//------------------------------------------------------//
tau_scatt = pow(10.0, (-6.46 + 0.154 * log10(DM) + 1.07 * pow(log10(DM), 2))) * pow((nu/1e3), -3.86)/1000.0;
delta_beam = exp(-pow(rand() * sqrt(2.0*log(2.0)) /rand_high_board, 2));
// delta_beam = 0.5;
Tb_sky = T_sky (l,b, T_copy);
DM_0_parkes = N_ch*t_sampl_parkes*pow(nu,3)/8299./(delta_nu/1.e6);
DM_0_swinburne = N_ch*t_sampl_swinburne*pow(nu,3)/8299./(delta_nu/1.e6);
W_l_parkes = sqrt(w*w + tau_sampl_parkes*tau_sampl_parkes + pow(t_sampl_parkes*DM/DM_0_parkes, 2) + tau_scatt*tau_scatt);
W_l_swinburne = sqrt(w*w + tau_sampl_swinburne*tau_sampl_swinburne + pow(t_sampl_swinburne*DM/DM_0_swinburne, 2) + tau_scatt*tau_scatt);
if (P > W_l_parkes) {
S_min_Parkes = delta_beam * beta*sigma*(T_rec + Tb_sky)/G/sqrt(N_p*delta_nu*t_int_parkes)*sqrt(W_l_parkes/(P-W_l_parkes));
S_min_Swinburne = delta_beam * beta*sigma*(T_rec + Tb_sky)/G/sqrt(N_p*delta_nu*t_int_swinburne)*sqrt(W_l_swinburne/(P-W_l_swinburne));
}
else {
S_min_Parkes = 1e9;
S_min_Swinburne = 1e9;
}
if (abs(b*180./3.1415926) >= 5.) {
res = S_min_Swinburne;
} else {
res = S_min_Parkes;
}
// cout << "S_min_Parkes -- "<<S_min_Parkes << ", S_min_Swinburne -- "<<S_min_Swinburne << endl;
if (isNaN(S_min_Parkes)) {
cout << "Debugging -- " << P - W_l_parkes << "\t" << P << "\t" << w << "\t" <<sqrt(tau_scatt*tau_scatt)<<endl;
cout << "DM -- "<<DM<<endl;
}
//res = min (S_min_Parkes, S_min_Swinburne);
return res;
}