-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathflames.py
261 lines (206 loc) · 9.81 KB
/
flames.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import discord
from discord.ext import commands
import FlameCalc
import pytesseract as tess
import os
import cv2 as cv
import numpy as np
import requests.api
import difflib
import re
import typing
import time
"""
This is a super rudimentary flame bot
The image recognition could be vastly improved, and tess should be trained on the correct fonts to improve accuracy
There is a lot of unused stuff in here, just to remind me of what I have tried and ideas for improvement
"""
class Flames(commands.Cog):
def __init__(self, bot):
self.bot = bot
self.flameCalc = FlameCalc.FlameCalc()
self.statMap = {
"str" : FlameCalc.Stats.STR,
"dex" : FlameCalc.Stats.DEX,
"int" : FlameCalc.Stats.INT,
"luk" : FlameCalc.Stats.LUK,
"attack power" : FlameCalc.Stats.ATTACK,
"magic attack" : FlameCalc.Stats.MAGIC_ATTACK,
"defense" : FlameCalc.Stats.DEF,
"max hp" : FlameCalc.Stats.HP,
"max mp" : FlameCalc.Stats.MP,
"speed" : FlameCalc.Stats.SPEED,
"jump" : FlameCalc.Stats.JUMP,
"all stats" : FlameCalc.Stats.ALL_STAT,
"boss damage" : FlameCalc.Stats.BOSS,
"damage" : FlameCalc.Stats.DMG,
}
self.level = ([0, 128, 128], [0, 255, 255])
self.star = ([128, 128, 0], [255, 255, 0])
self.flame = ([0, 250, 250], [0, 255, 255])
self.flame2 = ([0, 100, 100], [15, 255, 224]) ##0, 255, 204
##My windows env doesnt have tess on the path
if(os.name == "nt"):
tess.pytesseract.tesseract_cmd = r"C:\\Program Files\\Tesseract-OCR\\tesseract.exe"
@commands.command()
async def flame(self, ctx, level : int = -1):
if(len(ctx.message.attachments) == 0):
await ctx.reply("Please attach an image of an item.")
return
async with ctx.channel.typing():
attach = await ctx.message.attachments[0].read()
img = cv.imdecode(np.asarray(bytearray(attach), dtype=np.uint8), 1)
level
ret, flames = self.parseImage(img, level=level)
if(ret):
emb = self.buildFlameEmbed(flames)
await ctx.reply("", embed=emb)
else:
await ctx.reply(flames)
def buildFlameEmbed(self, flames):
emb = discord.Embed()
emb.title = "Flame Stats"
emb.set_footer(text="WIP")
emb.color = discord.Color.purple()
if(len(flames) == 1):
flamesText = ", ".join("T{0} {1}".format(flame.tier, " + ".join(flame.stats)) for flame in flames[0])
emb.add_field(name="Flame", value=flamesText)
else:
flamesText = ["• " + ", ".join("T{0} {1}".format(flame.tier, " + ".join(flame.stats)) for flame in x) for x in flames]
emb.add_field(name="Possible Flames", value="\n".join(flamesText))
return(emb)
def parseImage(self, img, level = -1):
#print(img.shape)
imgGrey = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
start = time.time()
cleaned = self.cleanImage(img)
cleanedGrey = self.cleanImage(imgGrey, thresh=75)
cleanedFlame = self.cleanFlame(img)
cleanedLevel = self.cleanLevel(img)
levelFrame = tess.image_to_data(cleanedLevel, output_type=tess.Output.DATAFRAME)
croppedLevel = self.cropLevel(cleanedLevel, levelFrame)
data = tess.image_to_data(cleanedGrey, output_type=tess.Output.DICT)
end = time.time()
print("initial processing took {0}s".format(end - start))
statsTopLeft = (0, 0)
dataText = data["text"]
m = difflib.get_close_matches("Type", dataText, cutoff=0.5)
if(m):
idx = dataText.index(m[0])
statsTopLeft = (data["top"][idx], data["left"][idx])
else:
print("Unable to find stats")
return(False, "Unable to locate stats")
start2 = time.time()
croppedStats = cleaned.copy()[statsTopLeft[0]:,:]
croppedFlameStats = cleanedFlame.copy()[statsTopLeft[0]:,:]
##Crop stats
statFrame = tess.image_to_data(croppedStats, output_type=tess.Output.DATAFRAME)
statFrame = statFrame.copy()[~statFrame.text.isnull()]
##Crop flames
flameFrame = tess.image_to_data(croppedFlameStats, output_type=tess.Output.DATAFRAME)
flameFrame = flameFrame.copy()[~flameFrame.text.isnull()]
##Level Frame
levelData = tess.image_to_data(croppedLevel, output_type=tess.Output.DICT)
end2 = time.time()
print("Seconary Processing Took {0}s".format(end2 - start2))
flames = []
base = []
flameFrame["text"] = flameFrame["text"].astype(str)
for i, row in flameFrame.iterrows():
if(re.search(r"\+(\d+)%?", row["text"])):
top = statFrame.loc[statFrame['top'].sub(row["top"]).abs().idxmin()]["top"]
statRow = statFrame.loc[(abs(statFrame["top"] - top) < 5) & (statFrame["left"] < row["left"] - 1)]
statText = re.findall(r"([\w ]+)", " ".join(statRow["text"]))[0]
statValue = int(re.findall(r"(\d+)", row["text"])[-1])
m = re.search(r"(\d+)", statRow.iloc[-1]["text"])
baseValue = 0
if(m):
baseValue = int(m.group(1))
flames.append([statText, statValue, baseValue])
flameDict = {}
baseDict = {}
for flame in flames:
stat = difflib.get_close_matches(flame[0].lower(), self.statMap.keys(), cutoff=0)
if(len(stat) > 0):
flameDict[self.statMap[stat[0]]] = flame[1]
baseDict[self.statMap[stat[0]]] = flame[2]
else:
print("Invalid Stats {0}".format(flame))
return(False, "Invalid stat {0}".format(flame[0]))
levelText = [x for x in levelData["text"] if not x == ""]
if(level == -1):
level = 0
m = difflib.get_close_matches("LEV:", levelText)
if(len(m) == 0):
print("No LEV matches")
return(False, "Unable to automatically determine level.\nFlame bot struggles with this, and you can manually specify the level with `!flame <level>`")
idx = levelText.index(m[0])
if(idx == len(levelText) - 1):
print("No numbers")
return(False, "Unable to automatically determine level.\nFlame bot struggles with this, and you can manually specify the level with `!flame <level>`")
m = re.findall(r"(\d+)", " ".join(levelText[idx:]))
print(" ".join(levelText[idx:]))
if(m):
level = int(m[0])
print("Level: {0}".format(m[0]))
else:
print("re match failed")
return(False, "Unable to automatically determine level.\nFlame bot struggles with this, and you can manually specify the level with `!flame <level>`")
if(level != 0):
print("Level:{0}\nBase Stats: {1}\nFlame Stats: {2}".format(level, str(baseDict), str(flameDict)))
calc = FlameCalc.FlameCalc()
validFlames = calc.calcFlame(flameDict, baseDict, level)
return(True, validFlames)
else:
pass
return(False, "Unknown error")
def cleanImage(self, img, thresh=95):
img2 = img.copy()
img2 = cv.resize(img2, (img2.shape[1] * 2, img2.shape[0] * 2), interpolation = cv.INTER_CUBIC)
ret, img2 = cv.threshold(img2, thresh, 255, cv.THRESH_BINARY)
return(img2)
def cleanFlame(self, img):
##0, 255, 204
#flame = ([0, 80, 80], [20, 255, 220]) OLD, PERFORMS WORSE SO FAR
flame = ([0, 60, 60], [20, 255, 220]) ##0, 255, 204
flameImg = img.copy()
flameImg = cv.resize(flameImg, (flameImg.shape[1] * 2, flameImg.shape[0] * 2), interpolation = cv.INTER_CUBIC)
mask = cv.inRange(flameImg, np.array(flame[0], dtype = "uint8"), np.array(flame[1], dtype = "uint8"))
flameImg = cv.bitwise_and(flameImg, flameImg, mask=mask)
ret, flameImg = cv.threshold(flameImg, 100, 255, cv.THRESH_BINARY)
return(flameImg)
def cleanLevel(self, img):
levelImg = img.copy()
mask = cv.inRange(levelImg, np.array([0, 203, 253], dtype = "uint8"), np.array([0, 206, 255], dtype = "uint8"))
ret, levelImg = cv.threshold(levelImg, 127, 255, cv.THRESH_BINARY)
levelImg = cv.bitwise_and(levelImg, levelImg, mask=mask)
levelImg = cv.resize(levelImg, (levelImg.shape[1] * 2, levelImg.shape[0] * 2), interpolation = cv.INTER_CUBIC)
return(levelImg)
def cleanlevel2(self, img):
levelImg = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
bbox = cv.boundingRect(levelImg)
x, y, w, h = bbox
w = levelImg.shape[::-1][0]
h = levelImg.shape[::-1][1]
print(bbox)
fg = levelImg[y:y+h, x:x+w]
cv.imshow("a", fg)
cv.waitKey(0)
return(fg)
def cropLevel(self, img, data):
data = data.copy()[~data.text.isnull()]
data.loc[:, "right"] = data.apply(lambda row: row.left + row.width, axis=1)
data.loc[:, "bottom"] = data.apply(lambda row: row.top + row.height, axis=1)
(x, y, x2, y2) = data["left"].min(), data["top"].min(), data["right"].max(), data["bottom"].max()
w = img.shape[1]
h = img.shape[0]
wMod = int(abs(x2 - x) * 0.25)
hMod = int(abs(y2 - y) * 0.25)
x, y, x2, y2 = max(x - wMod, 0), max(y - hMod, 0), min(x2 + wMod, w), min(y2 + hMod, h)
img2 = img.copy()[y:y2, x:x2]
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
img2 = cv.filter2D(img2, -1, kernel)
return(img2)
def setup(bot):
bot.add_cog(Flames(bot))