@@ -23,14 +23,40 @@ choose : (b : Bool) -> Either (So b) (So (not b))
23
23
choose True = Left Oh
24
24
choose False = Right Oh
25
25
26
+ -- ------------------------------------------------------------------------------
27
+ -- Absurd- and negation-related properties
28
+ -- ------------------------------------------------------------------------------
29
+
26
30
||| Absurd when you have proof that both `b` and `not b` is true.
27
31
export
28
32
soAbsurd : So b -> So (not b) -> Void
29
- soAbsurd sb snb with (sb)
30
- | Oh = uninhabited snb
33
+ soAbsurd Oh = uninhabited
34
+
35
+ ||| Absurd when you have a proof of both `b` and `not b` (with something else).
36
+ export
37
+ soConjAbsurd : So b -> So (not b && c) -> Void
38
+ soConjAbsurd Oh = uninhabited
31
39
32
40
||| Transmission between usage of value-level `not` and type-level `Not`.
33
41
export
34
42
soNotToNotSo : So (not b) -> Not (So b)
35
43
soNotToNotSo = flip soAbsurd
36
44
45
+ -- ------------------------------------------------------------------------------
46
+ -- - Operations for `So` of conjunction
47
+ -- ------------------------------------------------------------------------------
48
+
49
+ ||| Given proofs of two properties you have a proof of a conjunction.
50
+ export
51
+ (&& ) : So b -> So c -> So (b && c)
52
+ Oh && Oh = Oh
53
+
54
+ ||| A proof of the right side of a conjunction given a proof of the left side.
55
+ export
56
+ takeSoConjPart : So b -> So (b && c) -> So c
57
+ takeSoConjPart Oh Oh = Oh
58
+
59
+ ||| Splits the proof of a conjunction to a pair of proofs for each part.
60
+ export
61
+ splitSoConj : So (b && c) -> (So b, So c)
62
+ splitSoConj {b= True } Oh = (Oh , Oh )
0 commit comments