-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathMemmesheimerEtAl.m
31 lines (22 loc) · 1.39 KB
/
MemmesheimerEtAl.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
BeginPackage["EccentricIMR`MemmesheimerEtAl`", {"EccentricIMR`EccentricPNSymbols`"}];
ephSquaredInEpsj;
eSquaredInEpsj;
Begin["`Private`"];
ephSquaredInEpsj =
Module[{ephSquared},
ephSquared = 1 - j + (-2En)/4(24 + j(-15 + eta)) + (-2En)^2/
16(-40 + 34eta + 18eta^2 - j(160 - 31eta + 3eta^2) -
1/j(-416 + 91eta + 15eta^2)) + (-2En)^3/
13440(-584640 - 17482eta - 4305Pi^2eta - 7350eta^2 +
8190eta^3 - 420(j)(744 - 248eta + 31eta^2 + 3eta^3) -
14/(j)(36960 - 341012eta + 4305Pi^2eta - 225eta^2 +
150eta^3) -
1/(j)^2(-2956800 + 5627206eta - 81795Pi^2eta +
14490eta^2 + 7350eta^3)) + O[En]^4;
ComposeSeries[ephSquared, -Eps/2 + O[Eps]^100]
];
(* This does not come directly from some paper. We should derive it again. *)
eSquaredInEpsj = ComposeSeries[1 - j + (-2 En)/4 (-8+8eta-j(-17+7eta))+
( (-2En)^2/8(12+72eta+20eta^2-24Sqrt[j](-5+2eta)-j(112-47eta+16eta^2)-16/j(-4+7eta)+24/Sqrt[j](-5+2eta)) + (-2En)^3/6720 (23520-464800eta+179760eta^2+16800eta^3-2520Sqrt[j](265-193eta+46eta^2)-525 j (-528+200eta-77eta^2+24eta^3)-6/j(73920-260272eta+4305Pi^2eta+61040eta^2)+70/Sqrt[j](16380-19964eta+123Pi^2eta+3240eta^2)+8/j^2(53760-176024eta+4305Pi^2eta+15120eta^2)-70/j^(3/2)(10080-13952eta+123Pi^2eta+1440eta^2)) +O[En]^4), -Eps/2 + O[Eps]^100];
End[];
EndPackage[];