-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathEccentricInitialData.nb
3082 lines (3023 loc) · 165 KB
/
EccentricInitialData.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 7.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 168457, 3073]
NotebookOptionsPosition[ 166177, 2988]
NotebookOutlinePosition[ 166551, 3005]
CellTagsIndexPosition[ 166508, 3002]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"<<", "EccentricPN`"}]], "Input",
CellChangeTimes->{{3.497256913356784*^9, 3.497256915949699*^9}, {
3.512805555034698*^9, 3.512805598264957*^9}}],
Cell[CellGroupData[{
Cell[BoxData["\<\"Computing kappaE\"\>"], "Print",
CellChangeTimes->{3.5128057492568007`*^9, 3.5357115658406363`*^9,
3.535712114902763*^9}],
Cell[BoxData["4.562053000000001`"], "Print",
CellChangeTimes->{3.5128057492568007`*^9, 3.5357115658406363`*^9,
3.5357121203814077`*^9}],
Cell[BoxData["\<\"Computing kappaJ\"\>"], "Print",
CellChangeTimes->{3.5128057492568007`*^9, 3.5357115658406363`*^9,
3.535712120385161*^9}],
Cell[BoxData["4.376642`"], "Print",
CellChangeTimes->{3.5128057492568007`*^9, 3.5357115658406363`*^9,
3.535712124786769*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Definitions", "Section",
CellChangeTimes->{{3.4972624013298073`*^9, 3.4972624024241037`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"etaOfq", "[", "q_", "]"}], ":=",
RowBox[{"q", "/",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+", "q"}], ")"}], "^", "2"}]}]}]], "Input",
CellChangeTimes->{{3.4972624034738817`*^9, 3.497262411353857*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Binary Parameters", "Section",
CellChangeTimes->{{3.5357120898059*^9, 3.535712093467062*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"idParams", "=",
RowBox[{"{",
RowBox[{
RowBox[{"e", "\[Rule]", "0.4"}], ",",
RowBox[{"q", "\[Rule]", "1"}], ",",
RowBox[{"n", "\[Rule]", "0.012"}], ",",
RowBox[{"eta", "\[Rule]",
RowBox[{"etaOfq", "[", "q", "]"}]}], ",",
RowBox[{"u", "\[Rule]", "Pi"}]}], "}"}]}]], "Input",
CellChangeTimes->{{3.497261092494647*^9, 3.4972611557080603`*^9}, {
3.497261224116181*^9, 3.497261225642235*^9}, {3.512805655210455*^9,
3.5128056618003273`*^9}, {3.512805861762327*^9, 3.512805871145791*^9}, {
3.512805903976783*^9, 3.512805932839588*^9}, {3.535711585234043*^9,
3.535711586317203*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"e", "\[Rule]", "0.4`"}], ",",
RowBox[{"q", "\[Rule]", "1"}], ",",
RowBox[{"n", "\[Rule]", "0.012`"}], ",",
RowBox[{"eta", "\[Rule]",
FractionBox["q",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "q"}], ")"}], "2"]]}], ",",
RowBox[{"u", "\[Rule]", "\[Pi]"}]}], "}"}]], "Output",
CellChangeTimes->{
3.51280587179031*^9, {3.5128059055714684`*^9, 3.512805933402039*^9},
3.5357116050077257`*^9, 3.535711809918577*^9, 3.5357121554791927`*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Compute linear momentum for initial data", "Section",
CellChangeTimes->{{3.497259598918407*^9, 3.4972596049167767`*^9}, {
3.4972610878522873`*^9, 3.497261089907497*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Py", "=",
RowBox[{"eta", " ",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"Normal", "[",
RowBox[{"jInne", "/", "EpsInne"}], "]"}], "]"}], "/",
RowBox[{"Normal", "[", "rInne", "]"}]}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.497261280112422*^9, 3.4972613052000847`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"x0", "=",
RowBox[{
RowBox[{"Normal", "[", "rInne", "]"}], "/", "2"}]}], ";"}]], "Input",
CellChangeTimes->{{3.497261336690978*^9, 3.4972613457348013`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"twoPuncturesParams", "[",
RowBox[{"x0_", ",", "Py_"}], "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"StringJoin", "[",
RowBox[{"Riffle", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\"\<TwoPunctures::par_b = \>\"", "<>",
RowBox[{"ToString", "[",
RowBox[{"x0", ",", "CForm"}], "]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"\"\<TwoPunctures::par_p_plus[1] = \>\"", "<>",
RowBox[{"ToString", "[",
RowBox[{"Py", ",", "CForm"}], "]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"\"\<TwoPunctures::par_p_minus[1] = \>\"", "<>",
RowBox[{"ToString", "[",
RowBox[{
RowBox[{"-", "Py"}], ",", "CForm"}], "]"}]}]}], "}"}], ",",
"\"\<\\n\>\""}], "]"}], "]"}]}]], "Input",
CellChangeTimes->{{3.5357117100079403`*^9, 3.535711808696169*^9}, {
3.535711868688903*^9, 3.535711888014174*^9}, 3.535711927556814*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"x0", "//.", "idParams"}]], "Input",
CellChangeTimes->{{3.535711819411968*^9, 3.535711836749165*^9}}],
Cell[BoxData["11.845073499262103`"], "Output",
CellChangeTimes->{{3.535711819919846*^9, 3.5357118370583*^9},
3.5357121556283817`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Py", "//.", "idParams"}]], "Input",
CellChangeTimes->{{3.535711915564622*^9, 3.535711916146546*^9}}],
Cell[BoxData["0.04302515731159365`"], "Output",
CellChangeTimes->{3.5357119165205936`*^9, 3.535712155681204*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"twoPuncturesParams", "[",
RowBox[{
RowBox[{"x0", "//.", "idParams"}], ",",
RowBox[{"Py", "//.", "idParams"}]}], "]"}]], "Input",
CellChangeTimes->{{3.535711791138568*^9, 3.535711796694563*^9}, {
3.535711844903677*^9, 3.5357118511411743`*^9}, {3.535711891093699*^9,
3.5357118916037893`*^9}}],
Cell[BoxData["\<\"TwoPunctures::par_b = \
11.845073499262103\\nTwoPunctures::par_p_plus[1] = \
0.04302515731159365\\nTwoPunctures::par_p_minus[1] = \
-0.04302515731159365\"\>"], "Output",
CellChangeTimes->{{3.5357117979111977`*^9, 3.535711810571323*^9}, {
3.535711846983858*^9, 3.535711851504149*^9}, 3.5357118920346746`*^9,
3.535712155731748*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Inspiral", "Section",
CellChangeTimes->{{3.4972615483990192`*^9, 3.49726154976556*^9}, {
3.497261851513936*^9, 3.497261857226778*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"genSoln", "[",
RowBox[{"id_", ",", "tMax_"}], "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"EccentricSoln", "[",
RowBox[{"xeModel", ",",
RowBox[{"eta", "//.", "id"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Normal", "[", "xInne", "]"}], "//.", "id"}], ",",
RowBox[{"e", "//.", "id"}], ",",
RowBox[{"Pi", "//", "N"}], ",", "0"}], "}"}], ",", "0", ",",
RowBox[{"{",
RowBox[{"0", ",", "tMax", ",", "1"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.497261560057561*^9, 3.497261648657024*^9}, {
3.49726188951593*^9, 3.497261890635457*^9}, {3.497262759264587*^9,
3.497262782828643*^9}, {3.5357116344532137`*^9, 3.53571164091686*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"tMax", "=", "1920"}], ";"}]], "Input",
CellChangeTimes->{{3.497261917105438*^9, 3.497261919606812*^9}, {
3.497261974113083*^9, 3.4972620369879103`*^9}, {3.5128056943898783`*^9,
3.51280569633353*^9}, {3.512805819732025*^9, 3.5128058445931263`*^9}, {
3.512805890599957*^9, 3.512805890951749*^9}, {3.512806032563367*^9,
3.512806101392674*^9}, {3.5357116225345078`*^9, 3.53571162321071*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"soln", "=",
RowBox[{"genSoln", "[",
RowBox[{"idParams", ",", "tMax"}], "]"}]}]], "Input",
CellChangeTimes->{{3.497261618583802*^9, 3.497261621415882*^9}, {
3.497261665406701*^9, 3.4972616700547323`*^9}, {3.497261914769782*^9,
3.497261916282737*^9}, {3.5128056984156847`*^9, 3.5128057071175747`*^9}, {
3.535711624797655*^9, 3.535711648746993*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"r", "\[Rule]",
TagBox[
RowBox[{"InterpolatingFunction", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "1920.`"}], "}"}], "}"}], ",", "\<\"<>\"\>"}],
"]"}],
False,
Editable->False]}], ",",
RowBox[{"om", "\[Rule]",
TagBox[
RowBox[{"InterpolatingFunction", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "1920.`"}], "}"}], "}"}], ",", "\<\"<>\"\>"}],
"]"}],
False,
Editable->False]}], ",",
RowBox[{"phi", "\[Rule]",
TagBox[
RowBox[{"InterpolatingFunction", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "1920.`"}], "}"}], "}"}], ",", "\<\"<>\"\>"}],
"]"}],
False,
Editable->False]}], ",",
RowBox[{"x", "\[Rule]",
TagBox[
RowBox[{"InterpolatingFunction", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.`"}], ",", "1923.`"}], "}"}], "}"}],
",", "\<\"<>\"\>"}], "]"}],
False,
Editable->False]}], ",",
RowBox[{"e", "\[Rule]",
TagBox[
RowBox[{"InterpolatingFunction", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.`"}], ",", "1923.`"}], "}"}], "}"}],
",", "\<\"<>\"\>"}], "]"}],
False,
Editable->False]}], ",",
RowBox[{"u", "\[Rule]",
TagBox[
RowBox[{"InterpolatingFunction", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "1920.`"}], "}"}], "}"}], ",", "\<\"<>\"\>"}],
"]"}],
False,
Editable->False]}], ",",
RowBox[{"l", "\[Rule]",
TagBox[
RowBox[{"InterpolatingFunction", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "1920.`"}], "}"}], "}"}], ",", "\<\"<>\"\>"}],
"]"}],
False,
Editable->False]}], ",",
RowBox[{"h", "\[Rule]",
TagBox[
RowBox[{"InterpolatingFunction", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "1920.`"}], "}"}], "}"}], ",", "\<\"<>\"\>"}],
"]"}],
False,
Editable->False]}], ",",
RowBox[{"psi4", "\[Rule]",
TagBox[
RowBox[{"InterpolatingFunction", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "1920.`"}], "}"}], "}"}], ",", "\<\"<>\"\>"}],
"]"}],
False,
Editable->False]}], ",",
RowBox[{"psi4Om", "\[Rule]",
TagBox[
RowBox[{"InterpolatingFunction", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "1920.`"}], "}"}], "}"}], ",", "\<\"<>\"\>"}],
"]"}],
False,
Editable->False]}], ",",
RowBox[{"psi4Phi", "\[Rule]",
TagBox[
RowBox[{"InterpolatingFunction", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "1920.`"}], "}"}], "}"}], ",", "\<\"<>\"\>"}],
"]"}],
False,
Editable->False]}]}], "}"}]], "Output",
CellChangeTimes->{{3.497261622146777*^9, 3.497261679499998*^9},
3.497261886633852*^9, 3.497261927484668*^9, {3.4972619755289917`*^9,
3.497262045138639*^9}, 3.512805715637948*^9, {3.512805816009306*^9,
3.51280584631697*^9}, {3.512805882901588*^9, 3.512805941878674*^9}, {
3.512806038912747*^9, 3.5128061085365667`*^9}, 3.535711656742568*^9,
3.535712162234088*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"r", "[", "t", "]"}], "/.", "soln"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tMax"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "All"}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.497258700321097*^9, 3.4972587429815207`*^9}, {
3.497258828095784*^9, 3.4972588350377398`*^9}, {3.4972616866579027`*^9,
3.497261687878409*^9}, {3.497261882393655*^9, 3.4972618829446363`*^9}, {
3.512805825844769*^9, 3.5128058386663113`*^9}, {3.535711657197813*^9,
3.535711659627387*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwUV3c81f8XLg2jIrL3vNY1LhdR6UlFRiKZCSmU7MzsvS65XNdFkYqUUkbK
KEWZJaUho6xKvoVK0dLv8/vrvp7XfX/e55znPOe8z5Fx99/vwbZixYq7q1es
+P/vjzfdD+QzV29fIRr+MHpOD89LhCN2DE5s31T9LzNlVg8QeOIuPPh1e0et
wLaEz3oItbryatUgGzTzNA7u/08Ph+t6r/zLYodpm0snaUYPFoKfo3/vXA/e
fCXx2Wk98M4K5f58xQf6xscxtu/1kFJaGbmoJQDfUGPa9yk9/LHS9/ieJYSR
Ncz4tEk9TNc5bf6yUxwrkodlU8f08LbF0n/hlSz8bprrf3ithyIBoaMn18hj
TnQiRnJQDwf83jp81VLA/knLK3te6qFHKsBoPksRZQ1hNSHP9NCQQBf4tJOM
vuSV4Vo9eggYduQ6EaiGbF7hyRVdelClyv77WKKOb2eFKW0P9dAf5LjwLUoT
H21NgyXu68FYfmb0yyst6C5b0XRv6eGilaVDjZ82PvWcXnWmXg8ro2ufBayh
Ymuzr9NCjR5aXpzqnNPSAfM9tTz6qh4oqetqPmfpId/2RtnXc3oQnyEnfdy5
FfT7Fx54pOrhlCB9uXJoK24f/f5zKVEPr4y+hx8L3Aan+85rY+P0kFt8x/dD
iSFeXhU4fyRCD0mkS1VfowBWj8vzbG89/Hyllz//ygieDSYsHzM93NbicLuk
vBMPRzPe9O8m8pU1qOISuRP+223KFHbo4atRxL1eyV2YNFxkndPTw8y1pv8q
PHajoYpPb0RODyOJ24wOfTOBlU6ky/Gfuih6s2ED/+49aBHR+Pf8my4c9N+8
6mHuQVoIfQNlVhcvZmN8NxuYgvmX7t80oYs+x3usTfFmODnwWI2vVxf3NHbO
dXPvxe1s87vPWbqIydjUFOe2F848bzuNc3Wx9d1kkl7tXtTqrtG8nKmLxqIk
0XJbS9R+PiK8PUYXtWs6dsed2YchFRvN6+66eOYrbykmYI2wh0otpUq6aN95
6eLT8zZIyp370VKpA83s6x8Xu2zQZb5dt+ecDkoGb6lLztkg79Px+90sHYT7
dt323nIASQV7mkrTdKBe8PHRqucHMHTjquYlLx0Uzah+11ljh/NGiqLycjoI
oN/YXeTlgJV941yvTlPxZvh2xr0sBzAbOibUUqgwJ91/8r7OAWm3aDxhUVSQ
mp86aq9wRDsbn8/YMSqGp776PmI5osiEzYZnBxXGm3WYy91OYNvhIfd2Vhvi
bxvfu5MP4cBBoQhbaGPFt0BWt/UhXHz+tExbRxtTa1XMNMMOQVPVe261ijau
qRdd+3v/EJgbejjiN2nDMOZUMMveBfns+ZVv32nBVWILW1+CK7oq4usM0rTw
VO1N9plPbvj43FWV3k4Bv4/rFfadRzC3S8j3rqAmVNgvdFjZH0HhHeoLf3ZN
4Pz7icITR6Av6ximMq8Bn0FfMTLjCNJSRd6H12rgwa4omtW7I6g7ZRb/T0cD
wRKFfoWpRzH67Z/+p83qGOh7pqX6yAMaG3nnj2mSkUsxbra0PQaO2oAMzX+K
0Bh2NNl27Bg6Lbn9Rt4q4lGS74Bq5DEcTXz87/Q9RawdZPzHUXYMf5+e8eBN
UERkzKRY+6djOPyYo4KxRhFHe+Oi9JKOQ5PWRvXkIUHXo3mbdJ03DlJfTBzX
kccA95Nu7g5viO9OyPkkLI+A2xO2fwe9YcXmI1D4Rw5X1nH5DS17Y6GeLBHy
QA5StQ4lDLMTeLyt1tXNTg4c/74vc0ycgEzs2Q6zJFmUV3JmLi6cQHX3tlCh
E7Iw2i8h9J7dB/0R5AqF/bKIKt+l0a7mg0WhkIn1MrKYN89zjY7wwSO9q3e1
22TwmqV578tGX8SuiLlguUkGRQNVPKEKvvA8teXbrr/ScOJWdP2l74v1GrVt
FR+kifqTWGY74guyweiqm3ekMebHtZX/pi8ct9ZKUv2lUXY5OZPV7YuhHSa0
u87ScJ9aMSz+xheGfId3PjCTxpTjYoQCux8EYy783KMkjeldU7d0Hf3geI6x
auCZFC7HurI3+/pBTG64f0WDFLybhuy2J/jB5p/rNIqk8Enj6XeTKj+oSs7L
rvaUwjVvi92PWv2w7tYb4ay9UvAr72RYPfdDzEzCH21dKcyL3tV2/Euct303
/45LCjW2+omjvP5Q7Zqd+v5DEkE59c8Ok/zRIaGRqTYlCe1eDdn3Bv6oiFzD
dvqZJBbWVAV67/NHZdqjXeJtkrgJ0v3ZI/6oPfhT5VWtJEIjyzaeDPdH1LN9
XvcvSkKvQdxtkeaPABfh1JECSSzNF1yPLPPHdKD/F2WaJBpVN/37d9MfMozy
91fiJXHKM9syqccfLe/OxbqFS2JLGWcJx1t/8OccvmYeIIk/w0mfad/8YdGR
s9n3uCRc1sWVcKwOwKczgvcfHpFEa+W2DjPuALCNvbxj6yoJaePfn2nCAVht
Fhgl4SyJuMnbAk9kA9CUvklGwkkSY3Gh23jVAjDo5lNxwFESOySpHjZ6AXiv
UzbaTuDzzV9o+TsCsHGli5/3QUmwOV6vf2UeAIuU5ZcmLpJw/+EzImIXABGR
Jp+D7pJoz1NZ7ewWgK2d8wcveklCnjKtWuIdgKnfaZUyfpJI6iu3GQsOwM9x
K/VnIZKYOnEkUjY2ACtvJJfVx0hiN6fMhaPpASB7uZ3uTJNERcWbnoq8AGi3
X3PhZEhi7a4zX6fPBuD5mxSr8HOS8Bx3FFWtDMDRDevi+aol0RkjZORbG4DM
LyrTL1okkdaYS//SEQD+Y4cynoxKYtrOqlH7aQDo8sc5Vs5LwnRhw3jIcAAC
G3/v2r9KClwa6Zq/5gLQsf6dpKkaobdHxg5bfwXghZ3o6o87pdBzfHVczOpA
+Es81T97UAqZF2OfsIkE4sJ52x862VIwox7nE5ALxIkrCdKMSilwPNhvq6gW
iOM3vdfNt0shaVJh2HxHIGI2aPbl/ZVClOyj94zjgeDPaBnmN5SGQe1N5Usn
A2FmE1zAtU8aSztKfRqjA8GT9Iwt0E0aIYeDvo7SA6G956VFWpI0/M4JL5Oa
ArHpxhPvK0+lQdZk26H/IBC+eeOZc++kMdP6X6J5XyDcyPF38n9Jw+vtXc6A
iUBMjypZ/5WXgZukh0AjVxDCDv7csDJGBtZnasjmB4OQPfm8RWy7LDaSi/0P
eQTh8S/fyAQHWfQ1J9X6+wehgaFzRSVIFmbD9psZiUGYiLbo06sg+o3o8s7R
qiBsfUz24uWVA5VldtD/TxD4ZlYoUeflIMSYTM87exLT7LVbfnQpQFj1ZtJS
xUlIN+7MMHynANG2lNhDN05CZVdSKmMlCZLzyiGK7Sfxuehum4cBCQoWAW7N
0ycxGPCxNPEqCdqr/+pOagdjnJfx+jNdEfuCBae0eoJR12MYtc9ZGakHTA2f
/QgBvT+uMbKfDNH6PlG2laEQar13YPNnMqo3HVikrAvF8TXaDiOcanj5zOUG
XSoUNlaLTq+N1CBvHSxrvScUl74kbiqtU0Pb3tK1/YWhuKjRYCuRo46/xt/7
Hm8Nw1j33htVIprIqThV9dc4DIyBlJqdJE3Ir12RpmYdhmK/fz96tTRh8ZBr
R5ZHGILJQlzXzDVRtFO6ziI7DBLSMhnXiTluM8wLet+G4ePuB+KXhzVxUr/M
tTshHCdWuC6IZlFgdo57wZwWDoXoOoU5JgWy7FFpffnhGAisdK0/R0H/c7ua
gcpwdDg7v+Ktp0A9YP2qN33huGEjvEt4iILpirCKr6IRYDebXraU00LrhncG
IfIRqGvxDKKQtcAM3v9kUS0CMZzjFat1tLDbSG3pDyLwZch6d7SxFs6PTpiy
e0Wgum/8X8MxLTjzW34Wq4sAm93iH9MrWtCObI4vaYnAs9cvZPRqtcA1oSQo
0xEBLgO1Uf4mLTReX7Wd9DoCRl3lPOe7tSBo3pij+S8CtL/OWqumtdAfL0/d
bX4Kk/xWYm9ltLFr7tcpv8lTIHcwnn5P10bEHobK/U+nwNMvqffitDaqy9SG
Nv04BZ+PS1fL87UhfMBNv5EjEvfM3LtEyoi59/bDxVXqkXA+O91geUsbeQk5
wYXhkdhj2bb3vzFtdA0ry3+Kj8SN2MPnht9p4w+1fcAwMxJa8ZIr78xow/PD
d62ps5HQlRT8vH9BGwYWB7+ot0fCb3dfQO9aKiYESH4PNkShLvIj5pSoEPJv
lRASisIJm+64eTIVFl0Oj49LR8G3/Wn/hCYVDacyyTzaUYiU33y+aDMVGW/n
ZxwdosAz2LLR3oSK1s0ZRVcPR8GrQWtwzIyKBbqc2T/vKLzMqa45aEmFyy67
yxejo/Dhc2uxvC0VWpebvebOR+FL4XWbVe5UeLHZChldjYKET32tgAcVZw7O
djBuRuGXwaSCCDHfreWWIRl0ReGP8IjpN18qhoJSppI+R2G1kFDOQjgVPI+k
GK9+ROHjxV2s05FU7FJo3KmyIhqTN4YbxGKoqH713/knfNE4KOy5mT2Rivit
1odFN0dj2a7lgCqNij0uJV/1jKIRu1dtKSqbCu64/xJtLaLxbtX6jXdyCH/a
kyty3KKx+XlACUc+FUfePdOr9o7GyuoLAvwFVGK+k+7uDY6G7oWzbNyFVNw2
a/pvbXo0eqqo2x+foSLWhz1aPi8aTy6FnM4tIebT7APcRmejURr40M74HBXP
n85qRtdE41R/j3nEBSqKv21pK2om/E0RObV0kQp3gXSb2w+jYUi5LO1ZQcW8
g1zot9fReD159dX6y1TcOhXAzjsVDbuSa9O7r1ARc+YOS302GpFnOU76VlGx
+y6XisVSNHYu/wtNvErF+jH75uNsMfgi8nwh9RoVAyvLLVLXx8A0uv3TqWoq
iuS+jl4UjEHrWy5X5+tUuO3e7t8mHYNMsXfm5BtUKHrRVoypxMCFlFk3Q+DZ
tNf0v9QYrOWiMgtqqKi/QpIT2x4D4zf8C1q1VEQ+Olm/2TQGU21uj1sIbDR7
b7edTQxmX++R1amjgnMj96uTh2KguvPP12IC91MOHqN7xSBMqHL7FwIX2FT+
rA6MQc/RMA6dekJPId8zHkXGgF01b68XgRUKjMRnkmPQ5SDLk0bgT7dPX2PP
iYFQt+neAgLXDY0YKhTFoGQHmSOfwKf+KPcbXYwh+vHM9ngC75AMO+xWHYO4
z+cXDhKYAw++Rt+OwaJOEEmBwH2HeZOK22KgcSPoxQjhT36ii0DjoxhEX2lZ
mUhg5/KqipcvY+Du7FklRGDZziW9hbEYSE4nPisi4v04vbub9z8ifmfFsPUE
vsGV56TxPQbrG90KfQi+wshj/1n8i4H95236zQSfhpZq0d6csQga67FbIvh/
RO8sLZeIBVeiyDpDIj95dfyUdsVYsL5NlxkT+XN6cbhtjBIL2+uJDduI/E4L
/5kSM47FS3YZx0VCH9cNTEP1rWLxY1TmQ2MlFaHOTHZ7p1g0hs989b5Exapz
miq5frHQam9KZBF667kf3Xw9PBZ/ems4BAg95kz2WDxOiEX/oX3r4sqokFT0
8OcoiEXYedN0GULPBtWF9TGtsYhnC/DMZRL196rv72xXLBLFhW9UMKiwXLHa
xPVZLJpUbjVV5RL1s9/v9fZ3sVirms6XRtSbcaRMbNyaOPxJ4utJT6ail6fl
wmauOLz04xGRJ+rV6qJd1zw38f+EmdL1OCoOPs7kPSwcBx/jTakFRL0HSP24
sEOVOK8ybVQTQMX3upyunxpx8CodyXlK9ItTe1Q/11Dj8MlFo2TCm4rkQDdd
WcM4dKiE/Xh5lNB7e08Xm3UcVlnsLOJwoOKBV+nn9tA4bLm3Jf/0FipM/+jz
RUUS90fb9zbrEXrIea5LjSPup/G1DmpT8bqRM+5iehxIt3nfTqkS9bAumC/5
TBzOTVH+7RajQvjGHj3jtjhiL2q/qbqojbO7Jg8ud8RB87NX65Gv2pB9HR3X
0BuHJxmUFNpnbaix1XWTXsShf4uv+Y1JbRgdkHBmn47D7yfjDXiiDZ+lL3Fd
G+KxZ+weJfkC0d8DPQXf88Uj5fJ10t6z2uCYGapaJRwPYcMgzVUF2igfbn9p
KBsPhYStSfoZ2nhzN598UzceTW0uW574a2Nfsv5gmWs8prJLokr1tCG5fM23
9Wg85skNHKaaxHsUKrtq9Hg8RnmCb44paSPt2Dp14eB4PEhLDRkS0cY989HE
7LR4TJq/r1v8pQUtvniNyJp4vKJHxQ41amFF5vcHrIZ4tDg4tnvWaKFvlbdT
Q3M8yGy6RuOVWjjxfX/yl4eE/0M7f50r0MLFQflhryHCv7t2RebBxHtb2pVy
YFUC1nG+I1mpaOGn6sY3arYJ4Cl+dICSTsGPs6Lx2k4J2Fu8uvJODAULPAry
+q4JKNFyO6QfTMHsN33vXccTwJY3y/HPhYKJ5iM/nKITsOPzsOIDbQp6zG9x
p5UnQNLd5MjWIWK+OeGyfeJ7Anp6qe7KYprYWnX1HJOZiO1XmImZY2QMS1eV
7i5OxOqyEwlcHWScYl4uWShNxPzKLuPgKjJuxVec2X85ERWZ/tycoWRoOZxj
cbckgvJi0seQiwzlNYyclPFErLQe/75JQxWCrpFxoeQkJOjM8pT5KOPm84hY
BUoSTiyFj3FZKeOAWXjMc50kmP+Flre2MnJ1QqK0tidBNej79nW/lLBhvX/4
rHUSwg3F30+lKGF1o3uAZ1gSSDVPb/iVKuILn5mbXVsSdP5z99vZr4BBH9l+
784kVJVOcmyqUcC9jl/bYx8R9ujKu+boCsg5VSVV+TIJDyPXbX5mowDNifVv
f84Q9pPFWUcG5eFX8+TQ2U3JENF4MjzwTg526yof1wgnw+SL+edVXXIw9Ijb
1iGRjLRtM3dtr8hhgwhFYk4xGVkC9XeP+svhalzuCLYmYzjBfbfzb1nM7LM9
OHU0GbLpN/gUxGXx7LJa79LxZORIKsVTV8qiadXaLRv8kxFmFlAf914G6bca
RHUjkpEtUD38skYGSlLCQ6lZyTi+64vsdXMZbIyYNz2Tm4w/X1uyXmvJYOlZ
V+ONgmSEKPn83Scqg66UiMLXZckIHRxpVZoh9ovZIQfVhmRYb/T8fC9LGpZ7
6rq2NydDInwkPSFMGrrnMzcfuJcMHNr6qfSwNNbabRWO7klGxY/et991pVFx
5+yrvjfJuDXmop3xSArZQqEmk5PJ4AzrWqlXIYXQQMtbi9PJKFmUMG6Kk8Ju
hX9M6W/JiJkir7PZLIUpmptdEHsKAuVUmrSIfdxvhiyruT4FE6tD2tbkS2LR
5OfnzxtT0H1Ekv8qsV9zrcpNPi6aglrXQL5oI0kw3FysFaVSMLyZ9vKqkiQk
7qpIvJNLQRC/KW8TjyQ0I9rr3dRSMC/A5xA6JoGml6fjJLVSEHvk+YxyjwR2
Up0tRnRT0BMquuJBvQTs5hYm7ZGCbJ9VI3U0CYxZ3L8usDsFN9dKxW04JQHv
K1mRA6YpMPpr7mZ7TALRHqRN+2xScO8tNavBRAJr27++We+QArNssaVnmyWQ
I916pcc5BVqZO4cmVSQgGpMZmnY4Be4lagkzEhK4OGxvZOyZgqyAYrlpXgmo
68tzrz6Rgk9pvK9G10rgFnP+9X1/Ir7a44WP/ogDCy3lscEp0HcNMb/5TRw9
1umB2yJSUNZXUMP6TxwHrttu+x2dghM1iSfDpsQxul6WszEhBdvrP4ntfyMO
T+/Z56GpKXi+xlpY+bU45jubzlFpKYg83nf7z3NxnFJI9fmak4Idugsaj5+K
Y1WizeYb+SloP3o7t+iJOGhjUqv9ilIQx+U6eLRPHIKGn56olhL318YOqRL4
XPHt4o8XUiAkvtF2jsDKP5O8LlWm4LJ+0PvqfnHU2llre1wj/t9SxuM9II6t
9RL/ZGuJ/KpaU6VfiaODd6ZnrCEF3CUaxf3D4rDyb2CWNKfA0EnO79S4OIYe
Jbg730tB6Jb8JvFpcRxR2acu+jAFBzOeBjbMieNTqtivV90psDt/6LjxkjhC
3314mN+XAqap38HelRJYsbOebjOQAv5Z+w8710sg41zcId7BFOxRXp9bLSQB
/mUL5ScjKbD5famDU14CZw+KfKeNp2Ctyc+XNhQJ3BCspXH8lwLxPlX7a5YS
MAiOceiYS8G4RPOX2y4SaH9qJp+0kAIpSv3dKn8JvKRNNv/7mwLH7XN7DRkS
cJu5nnqHLRVDIVcyXl+SwEeTKJtI9lQs5m6f398igT9sAv/92JgKetb6Ay8/
SCDFbbyhXiAVGyPDqcPLEuC5ey0hSDQVvsz2VfWCkpCNMBadlUuFTExx7Ms9
kjCdCzN9p5uKm993mJxukIQ4RTKFY2sqvJ+uyHd7KYnZoAdtqjtSke4QrcKz
SNTPj41bg8xToVZ7xmHBQApv/l5W/+eaigetJrd8iXoOWj+ySSQ9FcIcwtTt
6dLYZZlgtTU7FWOH/MbES6UhlKOU5ZqXCsW0vcp7bkqjZVPI2oqzqQgzzDOK
nSD6hRj3T63aVIjNf/unAxkUKeONxXAqbp33bFrNLgufE+9FA8aI7+svjHZL
y2L7NZp93rtUpDkZ8twxkMWU5uv+13OpuKop5UXyl4X65qB2z9VpCHv3/t7A
a1m0G1+sjFNLQ4nc0hn5m3L4dITjZH1sGnp6RoOsIhQwW7LrTmtSGgbW7jxs
ka+Auddx7L3pabjg3/FkD9H/v+77WTyelwbOszFW2z8qYHHLzAPuyjQoBjAW
OBxJYON/JHi8Pw0xbBUm+/QUIfLgdJOETDoORvQcpX9Ugui/3tXKpHRCv+UG
AquVIW7AsY+qmg7v7B2ciZLKkLwRN2mmk47e6OwaURtlyJ8JXB9umg6Tec0b
as3K0Ay2cXkWmI4PGTO/U1JUYCwvxJbalo4/mVG/z7OT8dHdpHJLZzquekzp
ykiQQSsLs5zvTcdY2PlNiVpkDEgOFjm+SAe/rPqKL85kuIkUapOn0yFS28ce
eIOMCG4xj6cbMtBfsWnVmLUaxPear0vhy8Bgpxwr2UMN9zIjawyEMlB17G7Y
+gg1rOUc+XtBOgPMu3Ild0rVkLvqLDNUOwO/868evfKfGq4uSXaJOWZA6fHE
HDNaHfv09vn1H8qA+fWhsF2n1fE1JJY/2Z34vuFj/dNz6tD/9tZt9kQGaiId
/ma0q6Pj87mf92IysJV69moouwbeTsiqel7MQPI6FS25dA3wPSZl35jLQOrX
4es39TWxPKdZ3rOQgUexelqcOzQxw7elZepnBlq3JNTs2aOJNod9M8KrM9G4
dTAn004TJ6fCjOOFMyH+QXuHdJAmnv/uWrbekQmG/xun+HJN3JMcEPAxzkSP
wkav3CpNXN0xSk4xz4RU5m+l0zWaSE794tRkmwl300v3zO9oQneT6C1Z70xk
/Rz40D+giQKVE/7fcjPR9GFVFcdfTSTtDUnZwMrEwm72WwMrKQgIiD2reJa4
jyvSMmMtBXsa8noPXsqEVc1a4SYeCpZ2tCg+aM5E8PfWSTkZCqaOdhi+uZcJ
m0dDwuYKFPSn9tsuPczEL5eu3kPKFFx+PJVI7s/ErtxT5bspFDg5bhhjTGVi
hdPQKilQYBwltFj9MRNqe++znd9JgVapDHf3bCYC9uSHbDShgOudzta/S5kQ
aPxbe30vBc0BLiyPDTTsbFh/ctGRgsq8Y9dj+Wjgitu1+MKZAkZDUEehEA3W
TkHTpa4U+PxJWXgsQ0NV/hfuH0cpEE+7bqWrS8MGqt7BKj8KrlRfa/9pQEPq
Yt66ewEUbH5RpXtnOw12nQldbUEUHJCtFN9lSsOZ+IueuaHE/Lmn4jS7JQ39
F1VNXMMJvvwvsvXup2Flymct0VMU0FrOTVs701B8ebWqUzQFopMlBwUO0xCj
O6j7lphvKznP9g160MB6O2GxP46CB3aF9a7+NHB2PWGyJVKwP7pAUS6YBvFR
u57tSRSMXcgveh9OQ3amC/uJZAp+z9PjfBNoGF5x4mxmKgVpQjnfNFNpSNy7
+UdcGoV4z7I9FzJp2CEm5HCUmK8vHqW9vpVDQ+7WH206GQS/mRkWkfk0rCjr
0v1O4Hs1aa2GRTRE706uO59JgeVgihZbKQ29ior6hjQKRpaTyh9eIPwzuNbZ
SWBvhUTh9Eoapu1EXbdnEXowj8+0uEZD/OaQfxcJnBIUu8xTS8Nav67KJQLz
F0YHDjTQkH9A9qBBNgXnWyOnmM00TPHkC3oTWPN9hL3TPRreJeoOpxL47vrw
HomHNHRaSV/OI7CFdui28W4aBh77x2UReMgx+MbFPhrOshsfDiHwsbgguWMD
NDTd6TQ3J/CPigCm6iANtw4Tbw2Bkx77cc6N0GAgfNLwPuEP34JPVO04DWyN
S8aHCXxO9MRcyHsajj0bd5wj4lPfcdxd/z8aeK96hJ0gcIuX14s/czQYm7eW
viD4Mcv22HNvgQa5CLUBNQIP1h9pTvxJQ0fnV95ggk/P4cPqJss0SBTbOlcS
/C+sdCvjWpWFSs1ztT1EfhKUXPj72LOgeVlaYJjI38Z9zqn09Vng41dOep1C
QUmI068DvFl4EMGzooPId2Ob3diwaBaQNiF1nNCH8ccDNqVSWZgqPv1AKoGC
5zw2He7yWWgsLQ57QOhp3nnf1Y9qWRDuieUaJPQXk7hX6ppWFgxTDP4zjqJg
/RXz3AC9LMwmiYxcIPSqtGgSvogskLZtmVcMo6BBwvi/pt1Z2KWVzL8vhIJd
u3a5xJhlYQ0fm/nRkxS40bFrzYEs1I4Pzjv4U8BS1d+4ySsL1j9/aZ7wpMDW
/HHO3RNZKN18dxsPUW98Jw7zegdkwfwFD//5wxRkXknnux+RhRcskjSDqNcY
5SF+f1oW+h+/7blsTcEWU798UXoWkinVmx9YEvo6xibYkZ8Fnbc6oY/NKQis
VBGSKM3ChRfLR67upuCoYqRIb00WrquPyZ/ZTIGMCU9RaEMWglj1Kmo6FLzx
vCAq25wFyWsiHNeI/mNf0SsW8SALWUX8lhEqRD4VxCUVX2XhgC9JaZcYBRS5
O7KJf7JwN5NsePGnJmaNrC+or8zG2pr3dnLfNXHF/Z3c0Jps3BuPOkSf14T8
+Q0KFJ5s/HUy3WLwQRPCMi6Kb2Wy4VqS6ttK9NtlyX+qW0yy0XIjPbLwsiaa
DfOuvjfPhmXn48McFzUR7qKolmuVDYWNpx08SzTx5ew+9Y+O2RC9450wl6uJ
KfFzmgU+2ajKnBTSi9REj+gOnW/0bPSJzG4sId6PfsnrpNUF2Ug/wHjrR7wv
L2UlhAXOZOPHhsplVQNNjKv8/KVbkY2HbXt3nlDVxJJBzb1TTdmY0ddMXF6v
CdJBGQu2yWzUvecr+8XSQELxyiO81NM4X76RJH9KHWml/gdk9U+jnT5l9d1T
HdkXRndrG55G3jFfzTIbdRRWNSrZ7jmNtW33gtLJ6rjRHDjLcj6NozKvZ0tG
1PBmeDxCOvk0RsZK0xZ11GAg3paj8fI0bNxuzTr1qWJCTv7Nx6HTCIsITLC/
rYp01RTVi29PwzgltFfvvCoGDcw6hD+eBic5Qe9iiCrCHJ/9XvnnNMYkfjyi
iKnCyTxQe2ZjDiLGPyVZHlYBMy2+pEU3B5MvHr81G1YC96rzwYcTcvBVaU2m
UJEC1v5stfmSlIO3/UeS1aMVsDw7qhWfmgMupoa2kRsxXw2JfDlHy8GTLXTv
IyQF9NfSfceYOcj7VV1fWSuPXPd4T9eqHLx/79ip+kgOgm1uDoee52Dk/iWV
y+tkwX07Ru/zyxy4qWptoM/LYG31GcHo1zl47W8UXPJCBouFg8/PvMnBlTjp
k5rnZDAYaGU9Mp2D+cTVr930iPlSBmYH/+Yg36m7Js5fGrlCLsr//cuBlIKG
f669NDI2RHFEstFxaCjI+/12aUT+vNVRxE4HNduux5lXGs5PNXYO8dJxUjDm
YZC/FCTjpbY6kujQoHDM9ShKovokh+yoEh2jm75dvMkmCUPPL+yHVelw7rx2
6uAbCRwybx84pklHedTHvPcFEjgj4HUi3ICOOZW3Z5z4JUDmsLL+s5WOtrCO
CzHfxdH8a7Ne3HY6pFLpTeHE/jP0lmtV2i46inIVYn+fFYfIleqiAks6JCxu
SmXriKPyTEGcmDUdHu7qfTclxLH5dJxnqQ0d03vTbXvWisMheL/WJQc6mMHH
ytuHxTDtuUVY9SAdKRt/sl/rFCPyL79cfYgOl+6bIbR6MTANf3Q3uNNB97wa
rEMXA4ny9rqBB2Hfm+8OW7wYGuS68u960aF0KDD6caAYjAVrIo28CX9HVXcV
HBHDC46iwx0+dKjujo89bCeGo78TTMz86chlX4pSMxPDwucTan2BhH+bO4/9
MRRD0tiBTfuD6Ti6zXrvE6oY+Ae2/XwRSsdHtzq+S6piuPiQ9NYxgo5HSTYx
SXJi0L7N83A0ko5j4plax8TF0HZl6crhGDpsOp2r9wuKYf/Z8Zx3cXQ8+0fe
u4tXDBOne0KPJxL4aInxtg1iCEqoc/6cTIfTa5/qbVxiYAs5YxSYRsf5Gafg
3RxioHslK33PIPIvrH/0ALsYpJ38uCOy6KjW/k/Bm8A3LOwX/pymo+RzxrYU
4jy2Yygul46tT1nrKon7+inK91bn06Enova4j7DnJs9XkVZAx0EZyzM/CX/m
BH9nri+iw8F+d4CikBhiOKcCc87QEZewStJeQgzcfx7Z85fSse9wiUOqvBhK
Zm9uY5XRcTz+UU0DWQzq4yVy4heJ+8zDiyZ1xHB3IJXzXAWd6CduR9ZDDHs7
AubkLtMh/eP2Ng1zMYzcdnxxqYrIB/v7LWb2YvCpMmpWrSbiEzfYf/CoGGg5
/KnadXQ8cPiz1p7Ir3jiX59bN+l4v25heSuR/6qQ9/u33Cb4Lppo5zkvhh6n
25I779ChVVi5O7BDDE57y1Z3thL5DRnJ+vVaDDPbM2bM2oj4TBqbPWbFwKng
3LC/kw4j66wPL0TE4S2y3ayqmw5+K7EfOzTE0bNB9s2qR3QIWyRxH9stDtqP
D2tu9hN89091vTopDu6uk7ZCQ4Qe+740Lg2Kw6/F7qP/CB203Cf909/E8eSG
fnTXGyKe768qo3gkkFP472LEJB1scaM9iXskiPcyc2H4Ex3LMHrYfF8CQa5+
adQ5Om6QjTeEjktgwMZaPOsLHXdPPphuXknsv1uFdhn+IOqpae2KNzslIcR9
Ie/cPzoiai1XKfQR+3NNk5YHXy5+2umx1i1JIar8bMcd/ly0mU2WpfBIY7Qw
zklQKBf51qPdVDlplCQYJ3SK5WLx81eNTebSkD7w7KmyQi7u7KsZun5GGgqL
HwNm9XIh4lMsrGksA/VtItfDDuWi+uo1TvvLsqiTO/6bzS0XKX9zBV/dl8Vm
rkaTbPdc+G0VPnNoSBZGrxzGLnrl4q8ZVSVinRzsAlm8zwJzIZvpZtbtK4fY
cqFgckou/vgd//OKIo/+DYL649W5OKrb1itI7Lu2Cx7JPjW5mMiQkPDtUsDQ
0M2ni3W5EBgpvHX1rQKmLtl6czfm4kRmtOW7DSRiX8kv3tKei4EPXyNUj5Mg
E8q/nP8qF868PeG5oooIesPXbrYiD+cvnSgr9lBCV4fznStsebjSq247GKYE
yesVt7jW5KHsi+biQroSemINrvZw5iF7Qkvo8TUlyMq455ttygOPu2bm129K
eHqkxsuMlIfqoMj4qQhlkCx+H76ilIf7QzPtazOUEUXd7cylmgdfjxvda4qU
obTmtVWPRh5WBttGFjYqI65ihYGZfh6mhpc0Ny0S+/XHfevNLPKQMF9SonlC
BSlPC9descxDUMiv1g0RKhhpnFzBZZ2HpTNtpx4S+3daRtj3bts8UF567n1Q
poIx1dI3pq55aFjDlvDnhQpy/GZvmAbl4e8e73VGeqp4b7e56nJwHlRbY9bd
MVLF1u0J5Zxhedj/MUeD11IV0zyCRd2ReRCoCC/cdVQVqNmWaJqch6EPJPaX
2aqY+0azNWXlQffpV6v8EVWMDJbZnS3Kg+tXiVrfd6roudNg/+VMHvgSa/uk
ZlVxMXXMsbAsD4UYWM/7j3i/xaguH6/kYWTKOpAkRcaeFaau267lwUFhJLaX
RIbOu0Nu9Ot5ONYltGiqTsbG66nu+vV5WHvgxu9nW8l4aDTsmX4nD3GdQQH8
DmTUKs57jbbmoWjpwotEFzLOrV9znNKWB+/Qve6PjpJx6qX6idcdebA7svHl
dAAZx5p3+qh150GvtPV6SygZtuccfON786BZt5F5PIoMTe8Ef+X+PNg/owRY
ppIhua8gIPpZHqiv7BxSaGSso14NfPo8D2EBnToFdDLe/31xMuJ1Hhhqh5t3
FpNRTFcO757Iw1xMvFfnVTLSQg0jJN7lYSPnuF/HDTJCD9qcCvxA8Mu13rik
ngwrhegokU95+GGccWCwmQxDrtxo39k8SCjVJhm0kqE6VxFzfz4PJiV7Q0Pa
yFjb2B93/Hsebl4NoId0kbFw9l38ncU8FFDUbhr0kjGe8CuB9xeRH82O7MHH
ZPR58SR5/MmDhe49sX39ZLRYyCc3LufBM7LbseQZGZcp+ikbVjKwFNho3PGc
DKagZerhVQy8884Z63hJRtJv97Sbaxiw3hymcG6QjMCxsHRODgZEX9zdtH+I
DJeHtIxDXAzcFh27PDJMhsWVssya9QxI+0W+3z5Khv7pBtoaHgYkEh26It+Q
QQruzXLkZSBayNMy5y0Z/I5j2dc2McDV3BgWPUbGSsPvp1cKMuB99vTOneNk
zMpy0W2FGVjnZFYzTuARdqncy6IMaL8MuucwQUbPJ+28v+IM8AneDqgk8K2n
exjWUgw8kJu730/giw2H8stlGEhY4Kt/SuDc4iDmTzkG4mx2mVQRODYutWAv
iYF9r7sjDxHYx+MMq0yJAeowz/5pwh5htvC7CgMqAZU95gQ20egoMlVjwMHX
/H0q4a/D2j0H+jUYeJoQ8ySFiMd7tHuDvRYDd4MXD9sT8UbVm3eOUhlodtpc
+nOETOz1j+OO6jHQwbaU5kvwdc59n8F/+gzUi8nK1L0m9Kz/9FvgVgaKvV8d
73lFxoONNteWDBkI5PbzqHtBxssPzz1jdzDwrC1Q0G+AjOm7dtJrdzGgq3Mx
9heR31/5g69pxgyoHv57waGPDIldIxZF5gwo0gVUMwi9qIu5rJWxZMC48hXj
0EMy8PVt6yUrBl7TOjvZCH0dPTepddOWgRN3ygrbmgi9hnl82uLAwBO2AztG
Gwg9W34ob3NiwN78YXt3LRlX/8wI97sy8J3zl4/wFTLx3vs8s3NnIN3apeRU
ORn9V2YzR48y8Ojhg9bqc2R8c/i6PHOcyPdy7AyNScZqzeDbgT4MsBS8VugR
9STI/iNwyY+BUekwqbpMMgxu/pxaE8xA5b7V+TJxZCTwruyVjmFAhM1Bc9CT
DMZ0QtKlOAYSr5q4bXIjo6J1taF6IqFX8v5BaUdCH74cNVvSGPjbmPCw1owM
3h6eArtcBlLKByvqVMmQLaNbjTII/jgVlBLkyKCGb+I6WsAAM0xzp5wYkV+S
UHTgGQb2r8sMGeUk8pUgeYRWwcCmXbyK2kS/q3U8J77pMgPqowNPCoZV8UBT
9mVhFQNFdnsinjwl+ukbBdNLNxgor1zkuH1HFRpb1DTamhgIbXz52D9PFXe/
bfm92MfAjRb+P2m6qih7dMvd5ikDcorWFr9VVJFUrt1TPcDAQJyut4mUKkzt
VQs9Bhk4O/bN3pddFc+bRPUGxhlIPey76SvR72fifwZVLxD22fqOfiHej8dO
IUOciwyM+RaLcrmo4Ib2lx0eP4l6/W7y++8+FYS8m94ovszAh+uLl8K0VbDC
dLA6nT0f175cunNzSRmCG2/NHBXNR2hpdF5YlDJ+Tmvtvyeej8zIi2+tfJSJ
Pai6UUwqHxe2nN7P7qyMspMVac/k8rHBRcxk/RZlkF/lk6CWjzuq11+eWlSC
UUmwuxjyoc37T4zXWwl+ZK2hpx75kIn+15+jp4iQRdFfrsfykdSpPdEko4io
tlWis975iJ4laT5Yp4hMhxeOXAH5mIjTEwh9S0JlUvhro1P5YF3jyXFPJmFi
5O5gXXY+1Hn27WzvVYBdlvmr/Fv5aGNN2h8zlschB+qiXFM+5Id0rIPU5HFU
TkKotiUfX7n9+3z55XGycdau7z6B7/LmbZ2QQ847+su1j/LRO+z53SpaDj3b
Bl+EjeVjbpXWKtlaWWybPfrckZOJ24vVj59LyECw2eR8yzomnslP9ZStlcFs
qkqAFDcTuX2iP+PmiHlLZn7dOz4mEhPfXjx1XxrLByJ3Bogz4bv66vZoT2m0
NtNrUzSYKAk75Hr7hBRYacFxHylM2L/em/oAUgiwtbe0oDJR/qjCTlJQCtJz
4jO8+ky4uB2T7rgviTjZSpmzRkzoF3YO60hIYkf63Zw6Wya2OdiHSnwQh6hd
mYugAxPi3BOqzm3i+CqbRI5wYiI0cO8zwRJxnG8x7TJ0ZeLI7+WSdfbiYJt/
/q/7GBOBVrXWu56IYajl1mPyCSYezltcr6sWQ216UfFpXya8d1b/vJktBnc5
Nz3bICYeU3f7xFiJod3uP7+xSCaKHjWUeg+L4oxc39adMUyQ/OU97rSKInj+
BldFHBMXDqc43b4oCvmM0IoTyUwsK0WU3wgQxR87x+C+VCZEDLXv19qL4rnc
ViNKBhMvtNoKPLeLIunOyjc/spn4fWi986eNonDOmKpypDPRMNKX1/ZLBFT7
zoiWPCauHlYWsXkngql5mkACi4n1MTMjV1pE0HLHf3KqiInoqaiBkMsiYGTs
rzE5ywT3wzspbAUi2C0vvHfDeSJ/ehp1XsEiqP/8UOboRYK/mnrb3KMikL91
8kdTBRMf6tq4o22J7+NkenkvM2Hyj1dc2UQEq82elB6rYmIk62p5gb4IgjdF
B7deI+wvx9/pJotgckTFVPAGE14f/rnckxZBm3/K1/Z64r5h4aZlLhFo6VM7
RW8xIYClHyYrRVDGNlEc2MgE71B4u8OSMDY+Oh3Q1czErnX15ZR5YcTlb9st
dZeJ7m9Z6wamhTHv8p9I6D0m9I7HmG2bEIarUuHsozaCv5Sw0oARYfR9MW6X
e8jEOvtWdd9XwjBsXig41cmEls7EKu0BYVQnnfd52s2E6MlLvG1PhCFhabVD
6RETdZxcWqKPhUETWhaI7SP4EDIlbekVxp+xqpkX/Ux8M/qPKd8jDJ8rjq3k
ASY+loxvetktjOGT7IzEF0xoZJ/n30f8b7bt5rGhV0xYW9ksZRPfN609so0y
RPAV/G9NPnG/Sv9GvrQRJsZXdfu49QujsPDu+zdvCL0v6eyaJ/zjOOLTrDPO
BDM/kLZzUBjhZNEc2iQTG0UvqDuOCmP6e+fRyXdMHD9s8ldjUhj2rSH6BtNM
fJ+i1Xd8FEZHmhw3fYaJVp32X2JfhKG7/+nEh09MtLDuuan/FEaFWOwtwzkm
Kla6uP8h+Bd4R6blfyH0TJ31TFongqTqIbdP35j4xX/3/gMBESyEpens/MGE
k09JbTORz6M7dLmKlphQuHjM04vI9wDX1Jv5X0zkcOUvPtwsgtqz29NK/jER
ezy0Pc9GBLJen52/ryyAzJzPyPJhEdA1iykWqwvA2hSfwx8ogoD2H0M/OQrw
PU/ltS5dBBofr6nZ8hVg55ErRgKvRVBSe5DtKn8BUrN6fuV9EgF3FOcrNqEC
pB2b572yQhSz3B5xN8QKIH68Y5KuIoqrVPGBdQoFOGVZ+Gp1sijEl7svuSsW
IMNkY/63M6LI7AyLalQuQKnTt89HborC22lAwUu9ACs2lAjf/SAKpbiM8Da9
AmxtPMTDsV8MLVvK11gYFIDuanlyY4AYrBZbc19sLYCmf/dSPtEfwv2+X53e
UYCoGul8zsdi6HJ2G+e2KMChexbJqvvEcUxf1+ygWwE46gXeK3pI4PLXcbGF
tALIf+nPaWyVgmH1n8rozAIcHMtxyH4vhWfHhXTZswuw7BNi1rRWGr/GLKxE
8wpg/b2AelNNGmZPbiXhbAFCwiUDBiOlMVOV9ZlWUwCPRAXnFiEZqHjotyoM
FeCXtri6rbEsTsta/kocKcBrr21vne1lsfDWXWfiTQG0JofvWR6TxV0nWlXJ
ZAFU5fddnU2XxX6rtwVCn4nzf8W+cD+SRcSW5ADOFSxUl7eZO5rL4c1SYZUX
Gws/bX3G7jvJwaih+v3D1SwE8oscWO8th/WUQecEThZ+bKmX2Z0mh3MkVdPf
fCyU3vIYMmiXQxfvU5nPCiyErrnDN6ElD7Un75zNlVgwTPZ/pA955NJ+FVxW
YWGlfU2K7155OLPLc3tqsHCAJ7bHy0sec39Cf73ZzIL0u8enSwvlcaApU2fb
FhaeeFTteFIuj9th5wKKt7EAkZjmwRp5JHztfm9vxEKquzNneLc8BKfFB/rN
WdAbqw8c/yGPyHIKt4YlCzNu35oHVypgzN3YNMuKuC/k6tKl9Qq4MurfampL
+Ou6MeKxjAIMB9qq2lxYeNuXqaxhpgCPu8eS6gNZcOX7OKiQp4BZ35mw3cEs
TAnse6N3RgHhEj4nXoaycDe0p1yoXAEZUf77lyJZMM7S79veoIAbBqHSW1NY
KL50lUf9pQIMZhY3PU5jIXO6+NLlUQW0F0awu2SycOtUaOeXKQW8XIqajc1h
wbkrWfjDVwX8aUhsaS9iIb8qMNd9PQkpnmtuHDhL2O94/s2QjwQewdQL70pZ
aD4v9/m9EAmyIRkZ7OUsvL/1amehLAlV8utjWJeI+O+vCbqgSAL1eVag8hUW
xvdnvw4nk2CiTXcwv87CgvbgimQdEvon+CxGalgYU+MsbNYnwSmXsd23noWA
h75id7aRMLlDUHu5gQUhhczQ9B0k+HwpIJ1uJOxzPi6U3k3Cj3MiotItLAgr
JYYk7CEh1qp4Q81dFki1b35Vm5OQe71k4Vk7CyZPLvR6WZMg7io9faSDhTST
tr/fbEgo5z4/vNDFQnrnfxVmdiSo35V7ktzLwqmqgpYTDiTc9i1vE+xjwfwY
n469Ewk7JBQbLvWzcPVdJPsGZxJ6HlVe3jzAAu/6DtWsQyQciFI52/2ChVd2
dUWvXEgYVb2a4zRIxJfxYu8nVxI8h9WS/htiYf4ybXuvGwnzGdfDokZZSNi9
+kTwYRIiDCgnNoyxiP1sy6MPBGabqXUpmWDhzJEFVwV3EmiF1P0a71i4sTNd
To3AAqYNu+99IPzh/8n/jzhfsqSnbz3DgqborFYxgZUqG8kTn1iwLnwXtZLA
tfZbpE/OsfCsV+EbhbC/hf3OptVfCT0duMskE/49aDBkz19gQcY27fgXIh5L
z3u/FBYJPutIfnFEvIMCRrMNP1nwsV1b+Zrg4/DD9nGTPyx4ZbqI/SX4mgne
/WJwmQUHFuXxDMFnsHxn1/GVhSg02tt+/gAJywN7Wn6tKoRBsflqhf0kpCb2
XM9cWwjekbyCwH0kbNS2uCDOWYjjFgeT0yxIKJp4zLy2rhDhxypeHjclQS53
X4YhdyEcuM3yBYxJuLrjafSTjYVY1/apN9OIhNZzz49+ESjEyjMzT14ZkDBm
IeMaKlyIbJJ06X1dElb89HX8LVqIlz+l14ZrkWBkzW65RroQTTIez82USTjy
12ZPhmwhhApEnLzkSUi6fM6IR6EQ29Ji662kSOhYaaAnolKIQ+WGahn8JHy4
lkIpIReCFHo2YIibBA6nAVU5jUJYf7zzbJGDBNNaH2k1aiEmyuqMi/4o4JF7
KecOw0K0HnriGTeugM/cn1Z1oBB2q7I3bR1SAHfz5mWznYWousZ99uEzBVht
evb1wJ5CxCk9bTBqV8BA++qRY/sLMVzbbzxdpoAFf+uXnw8UolNnl6BgoQL4
xUv6g+wLMcoMb+LLIeb7YL2HUc6FeBQQvTEiWgFD8t7VOZ4EX86qEsu2Cvjd
31ApcLwQmzf63KwwV4B49KoLRScI/gpHXaR2KODQizMFFwMK4frYrihelehn
yU/ibp8qxLiL7Bz3sjw+vKfajGUT8QbV+UYWyYMjL36vB70Qb1+ektiWJQ+l
7X0mM3mFGJD/a/MsVh7eBV5bF1iF+KCacSz8qDxmTYoUOC4UIjQhXbBZVR4L
lf8WNW4RfO/ZRXOtlcN7O+Nz6Y2FaLyp8+n0BTkMrs7aM9lciEvDkutKGHJo
dhMtZN4j8pW/sfdAqBwShHUM/nYT9g5PntHZLIeNad5RPSOF+BiQt0agQRZk
rxcrPNiKENGR2rz1rAwkBcQv311dhHA2p13TGTLY2O5uLcxehGtGPjWx4TL4
Jjlf1ruuCPoiv8uCbWTQ9JJrp5ZAEbx7lo+kcchgjzGS/ykWQevAoZzP/tI4
olDFWbS3CPfVY6gbgiRx6qGLN8mqCH8GFCrGTSSR48HXW7u/CB/cSsLaiP2j
pTyC1mtfhFSeTafquiXAT9rD8/dwEabnGy6ekZVAB+kdv1toEU6NF+77NiSG
kQ5WyKfwIpT395o9qxXDV0+Ll+GRRUgIZGAmQwxSl+oK6HFFWDj2Uu3pFmKe
UEwQbc8ogt00JbT/nChUlKSkSaVF+Ph8aYfpKRGg61lcbVkRXKpPRCrZi8Du
WMq44cUiRDe58AdRRZBY+fm8/eUiTKgZXrci5ucRpRaF9Loi5HC8jcnxFcbX
Lv8UgYYiBIzeaxGyJObN43Ifym4XYYlq4iCjIQydyxmVTXeK8Oq5Mm/nVyFk
KzuqfuosQu82if8uxwnhYvd6WnhPEZIpljV0DyE0Hb/3afXjImjGp7nzmgvh
w2XFaolnRdj6/KbuhJAQlk2Hua88L0ITe/zazf8EwT+T7a/7qgirgo+JaHwQ
BFR+aO4bKUL+wFU6Z6Mg7Hou04ffFOFW+VaOL+cF4eN96KvXeBGCzz+eiM8S
BOvKg7q494R/95wXKo4K4otKnm7tfBH8zU5VqIoJYvARdm/6VgT3663z59YJ
4p7frE3w9yLYn09Srf8jgOxa00DdX0UYUnZtvTUmgJADi7EFf4owkmeccXlA
AM4/LmYvLRfh4qtWpa2dAlAxWHG1aVUx6lu1X+6+IUD0vWtNYmuLETw6WHGn
nNhiog92R3EUw/w/qSevigXwVopzcJSrGK/JQ2GMXAF03G94b7ihGEK1fnXf
0gVw7cjR76U8xYipuRn9PV4AjDV8q1fyFaPuw5fmwlMCiLzUyufOXwyFhJ6t
YycF4G7qK9MuWIxV+xxud/kKwPQ/UU15kWLotan07z8mAM2sLsNksWL4cLvz
xPyvAiuPpzL7w2mmUrLf9+J6abQTdyLShgfZIxVCmyTLHY3JiEKLwbULKcx7
XiGUmoqmmiw1ipqJZmSLpEiTEKJsEf3e35/P53zOd3m+z/d8zzkHKCh9H2zf
rcbA9HxNn80+CjNPl+y2+o5BXfeXylu7KLwNrBddWsxAVHC6rdKVwhPeyWPz
lzHwMDATiVwo3LytHStawaDDelNSiRMFxrXtXK0m5093i93ZHRR+mYwp0NZm
UPFoVQaPwyJicDNJyMDqTqODkMPbjN88GFzNYF5e9cbXHF7XmVK/dQ2DUu1w
RW1nCot+Me4sNmDweLAuRHonhblL+wfl1zGIkowZi3SjMPAwazpwA4O5pybm
J++m0ORjtbBpEwPZgwEqWh4Ud48YFRiYMPhj4dJQFy8KeVfyNM+ZMvCr6QuQ
96MQZ++4btycwYsTMTpuP1L46cO0pasl579nQ/OqIAo7U684l1pz9o6aH4vh
+DZe4+YlsGOQEyyiRVw9pENuRrRv5eIz0taoSKEwouyZYrSdgdz5aZMVWRTa
y2TPZzsxWH/h+HO5PAqXZ0QVHm4MBCldPi63KKTmKNfe38Ug9/fem1f/pHDU
7NHzxXsZqNnxhKE1FCzFGuP/eTIIezje4fuags7KujmWBxmcrbqkLh6gwKsJ
5130YTDTcPeczCSFLulWXT9/BkRmqsuFx8fJs8n+A0cYDDgnKYbZ8+FtuCnM
4SgDxkg36dJuPhye98ZdD2WgJbV8dJU/H7SaxcXDJzk+/1mUppnIx538qdej
sQy61K3Tb9TxsdY8aNw2gcHLwEhhbycft173L8xJYmCQbLRkz0c+bqi/MrRN
Y7D3QELhR0oJv2VWJmUzDJz7yIqEfUrISYxeb3WNQbFGaJ7upBLigmRTMxs5
/SDTdtEmFUgqxhYONHN6+HB0TNNRBeKSWRVmrQyqHOP3LPPi3puDw9397QxW
9fzo0J2gghO+TZtMuxk4Xd/1wa1NBYG7s3p6Jxgs/k9ZRXRYgKFJ+RnjKa5/
Dn7pYCMFCMiKV0yfZuDdnyMqOCuA/7MwY+PZBMobByM0SwXwdtybniZFcOHc
DecX0wK4b16CjeoECRv+qCkKV8V0k6RM1XcEJ7wDeosSVZFzcPCF7RKCcz5V
g7uIKrrFpSHuKwnCaKvqujJVBD7eev2YHsFPG+auq/ukCsrd4LiEAYGpoqh7
rQSNO30CuzhDgrEvo6kWMjRmpLq7MzcR6Bv6Su9YQSPeIVz9jiWBjrz5W2ln
Gjod+/tNbAiG3y6qStxH42mAVdlfdgQhzcszi/xo8FMVXFocCR6pyK8tDadR
qjGxZN8Obv1rh8rlaBq7b7wc7nYmSHy4VcsgmUZe46WkMXeCy+XL9/7//8vC
K3nXiT0EzttHGkUFNHpGftac60Gw56SPkstvNBKi3caTPAlib712bblBQ8g3
eUgdJGD679UP3KFRX7j0DOtD4Oh44kHmPRpBhgv2LxMRaP6k8nNLFQ2lvz8I
r/oTfJPerFf0N40y1+Yv+gEELadXukr/Q2NPb1lNxWGCjKk0fFNPY1ZoTubm
IIJAD7Vt8U00LiwQez8JJujKWTqW20LDkvlB3+kYwYeZK/k2bTR6V22b3R5G
8I/IoulUO43EirVPD5wgaDSxmrF8ReN7ezr7/SmCHqEHw3TQaHgp4f9zJIFe
wTKtE500jvz4bv1UNMG94826gxxW/vpkXmQsgQYR4z2Hy0/faF6QQGCyMvJ9
EIf3fpd5IS2J4P1J67p4zp5EyfHDghSC2YYep7U5f/mmB0zy0rj83/U0u3Hx
WDVYS2udJXj+sd1ZgYu3z1P4oiSDYMvBoQfOXD5JnxSL1v9KIBXi/XQJl+/q
qM/B9wlBaIHbmvCnNBp5HZttzhP4RWcV7n1CI7igWqE+l8Dn4q2Bmr9oqKy9
3OmaTyCxamdj5QOaO3dPX+ssJDAXZmniLo3ZPe62Q1cIfJ0enW0rplFwFMpH
rxEkpS44MlpEw3r+8u6vxQQO9YnOWXk0krWGI2RvE6gM5N4PS6OhW/5sa8Yd
gq99RzTK4mg02VWoLSonCAiMNIw4RUP1UEypsJLg5kiDuMif2//V2yDhAYGx
PnGv9uT8p1mWvKsm6IjTCwxx5fK/Paco5zEBL0PmWaEZx6fN26XTtQTzI1fu
WmLI1edFdY7bvwRxs2sS163i9DIrKlOhkaCz+7yHjgKnvzMHeAHNBMW+lI30
HE7Py8xTalsIbF9d+EE8rop429mxUe0cX4+urrd4oQr39FMhY28J/j0UOD3F
quLf5R6ftvcQiF6GevyWpAqzUpOA630Ef2t0zoxz/a71asbb9wOnx3BdK093
VXxecdylbYJgwubSTJKcKjLLjxnck2JBpQRY5IgEWOjgViKQYVHgaPbEwEmA
U53rdELkWPyxeazlkJEAvnMmlq6mWPTfn/X8LxkBDLcG8/LUWW7Oj+uuvaqC
Z12Bn6J1WdSGlztkPVeG7ZHtAV1rWGilahoX3VXGvXl6743Xshg6m2Hvk6uM
Qu3hrvENLO5qecUN+ygjODigwW8zC+9f8wd3DiuBWuBfYr+TxXlpecpojI98
8+OhQ24sim5tqair50PveLL5md0sCoVpEbJXuXkwVNzcup+FkvXvvzOefIif
jX4+4M9C2fHZDlluHk3knTQLjWAhzkxbJE7gQdyeIqUWxUIQL6Ee58kDj5/X
9KeYRYP0zOCW9Tysjqv2npPIotwn/ZNytyL8AuYnpJxjUdy4mzzdpIi2jWca
C6+woDOd5qa8kofvkXxic43Ft9Gmnlkl8hi7dutgfzGL9PqBjJ1R8lBY3Dqu
e5tFjGHWjjcr5WEnqUbfrWShb3H96qVDcmgzFb7dV8XiivCuc62RHHzDTK7N
fsQie+u7VwHSctz82A/rWhY3LZwm1V1kUdFU6NXYzEIvkpB35dKwlbmjE9zK
4t1tS6kBR2m0Wj0eU37B4uPQa96fbxZipOx97N5Ojp/WeRHZEgvxy8iXbRJv
WKxQU48aSZCCnFBGNf8tx1c0Tz9XQQo6uauv9vax2OJ0RiZfYQEq2kyDEwdY
XPxc+yEofj5seTtMvh9icbpeyIZPSaLV3kuy4SMLw8GgJE8vSXjHHKkPGmVh
L2ml7Vc1DyOV4l+VJlik/HdtmQV/Hne/yjhQNsliZa57+l23uZDTL9LeM81i
6l7jpFLcHGQfKhv9+pVF6oA4O4f9Fv8DqTv1/g==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
PlotRange->{{0, 1920}, {0, All}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02], Automatic}]], "Output",
CellChangeTimes->{{3.497258718339068*^9, 3.497258782250008*^9}, {
3.4972588193636923`*^9, 3.497258865979279*^9}, 3.497258973460918*^9,
3.497260645133172*^9, 3.4972607089354477`*^9, 3.49726168834382*^9, {
3.4972619276572037`*^9, 3.4972619398396053`*^9}, 3.4972619874365187`*^9,
3.497262045313407*^9, {3.51280583280042*^9, 3.5128058473621273`*^9}, {
3.512805883886991*^9, 3.512805896522706*^9}, 3.51280594293498*^9,
3.512806109749292*^9, 3.535711660407029*^9, 3.535712162390587*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"phi", "[", "t", "]"}], "/.", "soln"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tMax"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "All"}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.512806349771866*^9, 3.512806350320953*^9}, {
3.535711663029222*^9, 3.5357116651070137`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwVV3c4Fd4fllEkKtkrrr1X9riva1OUkhEpo4yys0r2XtfmclEJpSQpouGb
iiIRIkkoKmVUZoWf3z/nPJ/n83ne97yf57zPOR9hF19rd1oaGhqOzeX/+9Lo
i6eiqfREmtwLprvcyXr9pdxh+kMTxBYTfVpGDh8iOF67cA/9Ip7Q5qsY4LhI
DD54fZBuiBYNe+5d/s2VQdw9y5W9OsiGrq2kiHf8pcSPDyx9FwYJKN4a0tkg
WUs0Fp3+8HNQGWeiog57mD4irg6q580PkjBdYBM2V91NbDOoqui9fBgCkyl2
5f+NERUzbn1b7jiM42ecptSmxoilQ43ygnOH0ZHXYDi1fZwYerajyUv7CCqC
BFLJR8aJ8gXfuuj6j8Dt2+6vvN/GiZRpmUVVhqMo28d804jrE9Evq86IctoO
6uoUK/6USeLo+6aU1nQ7tOf5qZyonyRaiP/3euqOHZhKA1eeD08SxVt67VVo
7FGVVXNnXWaK+P7zr7NdhfaQtMrvFu6ZIhprqOavv3DAoMIX1cy9X4n8H+9P
ucg6QYHTZIVjdJpI89u/8MUhJ8wZupte3v6d+HmrtLliiBM8TLwWnNS/E2/K
U26u/ecEgxjHMPes70S9i+FBhbbHETlt8aXN5AfRWUCbtjvGGZI6nnc0Hs0Q
e+VGM0p+nIC0k84owXue+FS9+YvVxglUntK1noubJ97Tzwcd20nIponEfCid
J1JsLH95qp9EzFnZq0J980SXiEc26jEnwUIYnNyv+5P4q6uU/w2XC9zqBK5Q
uH8R2c84X99m4IrS50oJ+2d/E6W3XXl+0NYVAuznort2LhBxeWqiyNsVt52f
GScoLRDPDJ3lk811xYAD78nr5xaITw0vpB2cdEXxNavjnTSLxCCBIp+iRDd8
TTTNlhFZIqY0jaRMFLvhQ1n5qxrTJWL5YaEqmTo3/E1mowb6LBG7kqs+Phxy
Q6oQLcto8xJRdOnuwQkpd9QLlr7Usl0m9nW/UZbpcsdAUZoPbdkK8asnp1XQ
mDs+D7zuC3+xQlynd/B+uOCOxsAY1/0LK0Rp7fErVgKnsNx/SJLGYpUYUzXH
HuRzCtyrJ6y7/60SlaN2LD/YdRoZyvWjyoF/idlKxi2WNh5wWBzeX3x3najw
3t5E18MDLxou+WlMrxO74s72yZz3wAFvvZUDezeIW4dyvzNe8oC54g2urykb
xPMXP/G1/fBA0SeNvC37aODWGXVBPc4T2wV/xhYIbMGWc7mM4gWeWCtp4mbQ
2YJSwepc9uue0GdrM21x2IIh/9c3fr72hJSDSDV90RYc4Bb8UMPnBe9n3eeF
eWih5t6iK3THC7f4UjWUJOnQx/r6BetzL2hZXBiPt6CDX9OEzdqQFzIP/jFT
8KXDdebtPsPrXug64CwY20iHvfV2pbnm3jCo6H2M/fRg3FhcZ5zwRhFLrmNW
AgPeFSq2/tx1Fv9uKH/pBCMofTU7g8XOYoYtgBAYyAgHVgnnP5pnEaPCsi2+
khEjsQLrtK5nYW97+tYkCxPGfLbrsN89i9GIlMMXx5nw1fBzo5q9Dzo1OWW6
KcxYmS+4df6SLy6GqUSEG+/EfZk9Gxt3fVGVdnngR8xOhJ/KsIx76Yt3DEVC
Fx/vxL/3cTNpv30x4t0pF8K/C1GfmjheE/zQ4PNy74H8XYjrvnp4LMgPhD16
IiPJu5FaEfmalscfF888b4hz3QPzfZ5sHCL+oDlu25MWuQeMT61tJOT8EXwk
6axP8R7EfRJ7b6HvD8vxphf33+zBBULXVK6nP3Lvn162IbLDp5x7XbzZHwZu
zPS/d3JAVpFWX/OpP2pEmSErxYHpx99jLbr9UXvOJ1SFxIHTHx8x+U3443dI
rcf1QA6cEHTnuL89AKpmkWr7+jlwqOS2rMWxAEgcd9hVnsqJXbLFvk7uAfAJ
ZNKtvMSJ7pa4el/fAGj297uHNXLC/L2tRm5sAJJ+fnFNnOAEiXfd4ENNAP7t
mKI1U+PCvkLzY77/AhDaMtF0tZ8LXLmfknOogVjeKfHp/Bw3uGXuxq1UBqJy
m+Ja3To3eJ8kRDrVBeKC9W3Lpyw8EJyXOifRFggn0wrORBkeiO33O9HyNRDt
9OxFie48UKFfU/ukEoRedwnN53082FfcrWSqGwSBw2yd28d5oKZcLnvTOAhK
YoWOKrM80DphQAixD8JMotaIEiMv9B8kszBHBiGh/nLxjBYvrII4Pyu/DEJZ
w8Oi6mJeHGT+OlrQFwTesd2OR6p4YX35/rt/I0EwXedS/lbPi6M9jq+fzwVh
4EuswesXvHCSvdLswHEOeUT1udwlXnh/VsiKOXEOzYKoJO3nQ+IRM703S+dg
0Ttx5OM3PvA2dPPSbglGlJ3EycXffKjdc2RZiTkYnJNX41bX+PD2zfG6rL3B
2L43Yuur3fwQPRREOGQajIbWLVerNPjx5EDZ1p6iYGQEX1Z0iuXHmvFi9yud
EJyez/kqzyoAcmV4zZpxCJalO/L9OAUgupUmSe5QCOzq/xRVCgpg/7Pt+unu
IaDvt9aelxcAxUDozv6MEEQ1LfOuWwpAAxYFnR9DcDCX8bhIugACNS85v4gJ
xUZoeGsQrSDMy1kXLNJCEc+yl5OZSRCEbReSuvNC0bA0eIOyUxA9/Udv91WH
wrF3cP4qvyDk/XbQjXaHwma0gctXTRBfK0Mqf/GGIYV55OCIhyAc2S1n+O6E
4dBcaGvxC0EYzv0J9/kUjqr9awE/IvYiWufQSV6NCLj4riVWOwtBq7ao4eLj
SIgEtpvrMQjjzMrPqA6WaCiGjBzmrRSGlv8pzim2aOTS35VaqRYG4/RwDR13
NG5TB6sHa4Rx9X3bWz1CNA6Qtz0svi2M0Ud5snfVolHe5vVb46EwrOI1hy45
R4PUTmPxql8YymzRCudvRyPzNPtkBgMBNKmLTwvvRWNK69uBW4wEdNN5Odxr
icbB6K8Wb5gJ8F60jv/5bBNv0F1SiI2AiiHR96eHozHSYms+IkgAZ1lHwhG6
GDxz1NAY1SBgVWbXqJxNDNquWMpY+xKwROWNVnGIgY94RGZ7AAELO8VENZ1j
MMngfg/BBMz+1vQy9IzBH/mUSL0IAiZaXJccImKgH2Th7plKwEuLRtakqzGY
Ce+/lVhNAMX7OHFiMQbtjz4L7p8ioOCDx8SXPzEoGFZaODJNQK5VYPzMRgw0
DKnerrMEZKgkda4wxUL1cGh81hIBMX9v2+4UjMVM6GTzvm0i8E5l8NMxjsUO
imX6dSkR6NTcKM/Pj4X/D7aK34EieC9UU2ZUHIue3mjjxFARhOdfK10oi4Vh
/+5gQoQIGqMrS6yvxaL2du+Ib4IIlO3KC1kfxOKwbaiXZ5EIpBhyyQnjsUi0
rlycaRVBR3h2pupULCb9wzy2PhfBqXlyxufpWDyes9sr2SmCivfpaaSFWFRq
Kw4kDohAqD4xaX1rHCTip562TIuA0/l8VLBsHB7FONKxcYnibn9YpJhSHGpY
z0y+4hfFEfPQi/2qcfiqcU8hjyCKbNVzF5SJcfAfts8zlhcFyw7f0NlDcfD2
C3+tYSwK+vsufqdC4iB/pUH6YqgofrKZnzj6JA5tp3PMn30RxdAZQo9XexxG
Q809P82JovX5H2JkVxwqaIcLOFZEQQ6v2Vv9Ng5/n5tJNzKKQXFix8fV6Tj4
XTvmuiQtBp/br52oe+KBJJJqWaAYjjJXv7rNHQ+n9xRLgQgx6LlH6T4XiMcr
cfn8OwliYOFREpiTiIfczbpqKYoYbkRlj0AnHqNJwnmkJ2KYtrI59tktHjza
9Zr2XOJ4c02uc8UzHuxlRi7nCOJoptuqzeIbj+dJhzhuyokjufEer1rYZry0
r9DXUBySe7mHE9PjwctwP9AwUBynZ4ftZO7F4524/lGdt+L4nHbiaMC2BNhN
27NN1knAZ1qWoLgjAYzHHrb7P5LAssnqzMyuBBQTGEfYuiSwnS473pM3AYJr
/bbkLxJQDGtrOCGXAO1HXD3eeyUR4S6+x+pwApqvz26VyZYEp96P1zJlCeC7
25EsECmF8uKm4m9XEjAQL5TOnCEFqdW401XVCbjlPOu2UiIFnQaBDUJ9Aq7o
Ox7tbJaCq7SVPO+zBNQ/ObwXS1Ko46xPY/yeACvnH+/ue0vDbC7EbFItEYWq
/Dwm+2XArySYwKiTCBbF02xvHGQwG/D0iYx+IviCqJmGnjLIXdqlE2CRCGHV
wtOj8TIYXbsmv+GciGMfFhlHHsogYMfIHp7kRLT+aT/VISkLQ8uYgzoZiRCr
p0ZdU5UFF1ky3TknEcx5so0+JFk82HNuayU1Ee2vulyvHpPFVj7WVeX6RMS4
275sS5MFRQqj+98nIotBvHvgmyzOeE/x+o0lwlr/gsf6giyIN9NscyYTQSIM
XtxBI4fPiu963s0l4uprmpl3HHKQ1whoO0WfhNSzKUFEyKHNuKI6Si4JXsxB
/50iy+GHK2NgQ2QSJLlKnEb3ymO21PDh47jN+iMyEbSS8ph7F7WtMzkJM3WH
QtgV5fHLarV4PCcJYZ2qX2ghj2Xt6aes1Um45HOeY5ezPGjZuzg9e5IQ9ce1
WIAiD56nmc0Cwsl4yBheFMygAN6NTnop8WS4RN+pecysAH4tRqt9Msmw+e7M
sLZbAYJ1UZ/MVZPR2m6sZiOoANES/x2hZsmwt/vKHqWmAMWgw8ff+Cdj5M5f
93E3BRiLctEmPklGrUf34LNmBXxzManWbk9Gc713eeJjBaRdCrGc70yGUXz5
FOmpAvoEhyj2A8nIMDInVb5SwAmeIhXZr8nw0hzOJIwpIIyVz72XJQW3P4mH
bKFVxI0VwQ4++xToPByamBdRBNsr8Yy6uRTobyg9qT+piPU5xasvF1JQ339G
+qarIqbZtB98Xk2Ba/ni/FV3RTyxs5rmpk/FV0GG+mxPRQR+DjGO5k6FymDV
HXt/RfT/7Vg/pJ8KAY1X265EKaJA2tv3d3YqWB0Gw8xKFcGfdOugmloaCHOL
tYtvFVEoo7lrz+l0/KKrcUvVVYKNxSvyI+90LKV4jgoTlcDmfXK3l186ziwp
3G+CElKvJ7P9F5aOpNJU6hcDJVyUGmb3TUuHzO7sUHNzJbhJnOfpvJ0OsPdp
StgqQUnkISH2XzqM1k0dDvsr4SWvvurvrAz8+pxbqFuthB7BW+L0BRlwNXEg
yF9XwluCADdHSQYeaoypCd1Qwrj06h+1ygxQBEjcTHVKWNG63RrenIGtsV1u
s41KED8mvJ/2UwZIO/a37ehQQkzxFtfd+zLxzMCcoeubEpLKfI8QNDMRrKyr
/ve7EjKufDBS0cuEnmfbuOysEopq7kvamGaCwYK5veCXEupa/GcLHTPBIcI+
lvZXCaPvx8OE4jNh4mHV9I9FGVr8T8gKbzOxHlR7Q09VGRMioqPfhjPRTKMp
clVdGckyCTIVHzPxfTTvD6uWMoa0zJ9zf8uEjL/p4g89ZYTYv/m75V8mWptq
7PpMleFg4a8yvYsMnznFtzZOyshPii59oEZG4xSdU26yMrzSlJ/xaJLR37ab
JTpNGXrkT9+DtcmQ5tb+FZCpjMkCI00lkPFWm6HiVJ4y9lUx9V81I+Mi/fnS
zEvKePMsiynTkQxbCR2PlWZlsNJdDjoZQwZzdUbFw1/K2Lr6+PDPODKsCuq/
dSwpY332g3J0Ihn/2koSPvxRxtwwz8/yNDKchPwsRehU0FOfdXYsn4woQ5pO
UXYVZLtEn3KuIcNyYGCLoIYKUuzKjOZukvEzqGqxW0cFMZYPRSPryDjCKhqY
qq+CQK3VidK7ZHAZPSiWsFDBETZ/59HHZNAJsxfPH1cB55MTdk79ZJz09E74
nKQC1qaL6jNvycjO1u07nqGCrbUlnBHvyEijlL2bylHBctFQf8koGRdastOF
ylQ258uDh0a+kvFsZ1Gb7j0VUIRhfmyNjHJPnVrVLyoQjN6rYy+ehcf6tZ5h
R/ahNpCR8EEyC3z/PZ29fmwf9E793HZSJgsTXFwR0y774GTR1uehmIWNhxf0
c/z3oYTjtHeoVhYWR32LEzL3ged6LaXAMgu9ipwNz17t27z2uqsDwVn4NBT5
8cIhVVQ8E/9oH5YFIuGd5Ky9KlSadj77cD4L7LRVW11dVGFNHSdPRmXhx+fs
JJtAVWSdjpdcTMnCmNOrRqs8VbD+67JlL8tCd/u+Esl3qmASc7xn3Z4FCz++
IkEnNXjxEM1rXmQhekjLMd1NDS9ZCKN0XVngXBn5+8tbDWlLXxju9mTh+GD3
7KVwNbB2BNpwDWehZX/HUFKB2qa/Uxfe/8jCuWCb9cOv1RDg7JO0by4L/76+
ieZ9q4a+w4f4039moUZ2+tjAiBpydbgM9ZaycLGQ3CkxrQYu1is55RtZKHoU
wKRHrw7+283K7mzZ+Biitiappo4LV6nPH7Jn4zcpnKCoo44PRVEOnFzZIH9v
M5EhqaM0xjimnS8b2gJ7760dUIfQkTe9UmLZiIgXdWd3V4fY8je/WfVsUGr+
zXJkqUNel+dWiFM2evksdq2MqeOOiOdf2hPZoLn2a45+Sh0a2++bZLhkw+l7
fd3W7+ogDdqNVZzORhXXiP23BXUc9S/c/cY/G9tedfyWZ9RA5FWuINmEbHjG
N2gNyWqgh4VTc7w2GytDl7uifTVgs+Aef+b2Jr/rZ23PQA0MD9/tXb6Tjevf
cNYsRAOfq2y8WO9no/jPtciFixpY0c8r1m7LxiUlZ9JKugaEg9nX8wazcV84
/F/ndQ0EjLK1mdPkoOx7jytpTAMdzx0fXqfNwX9hdP80P2lA8FZl43aGHHj9
TKmRm9LAy0itGy+ZchDOPprK9EMDBGGXPPM9OchbUe/LXdZAr+vt0+biOdjy
aYSZgVUTit+sdpjvz8GS9mvJSxqamPudZmNWmIOrZyqO0CdqwkThOcVMLher
jjyF8nu0YLfV9EiPQi7UbKY5Yzi04PXhBYutci7orJ/WD3BpISP1VZSbei7m
pBUcI/i18PZL/6lI/Vxw3lFReS2mBbfyT8p3bXLRwDsxGqOhhZjdWzqFLuai
g/5yhsNxLTz6rf13uXsztnEfPXtTC5e6Gl0O9+biUa9IwsAtLcRdVXlZ25eL
W71lq3r1WjCzlSlyH8pF9QNZN65GLfQ386r3jeeC/Z2Q9MdWLUxHrwbULuSC
QdLhZW+/Fjh3NU678eahNXy9On5dC6tfla1b+fNgvWNeUWOLNkb+q73PtzcP
q3h1f4ZOG5cCK5PeiOThKO/Av5NM2pAdzBOHXB5EdT+n+7Frg1Qa5MKHvM1/
5vlQRRlt+MgqD/e650HlRHUU9Zg2zi3z/nH2yMMtz3FpVmdtXHhCxzvrlYfv
59jD4ly0kWo3YL/dLw+zcTuPxXhqozou9B0pPA97t0xXPwvRxsTIo6E7GXnw
U/5oGpmnjW9VVSv6WXmYPxW136ZIG/MBZO6enDwMfi6MU6ZqY4PRxe5HYR4U
5xRo6K5qg1+VYUj0Sh4M/+uS2GjQxtF0i8G8xjyMPaHeu/hWG052+5ZFmvPg
KKzRNTCsDTcRAa76B3lgMaqhUfuojcD7s0e7/8tDXGa4KdtXbZAns95u7coD
W5SwvN4fbbzUHRoIGcvDGonOIlZIB7qzbv32TPloP57z8uU5HXC2mFx+wJwP
a8eyGenzOphNlPbby5oPQQ9r7oIoHZQKzzNPsuWD8VDFltxUHawfOW/gx5+P
XroeK5HLOnjcklWfoJCPxxIa9rd6daCf/Ih8xyYfHbPt8zu1dcF79NJxTrt8
ZL01ei5A0sUvQpxsmEM+noqUtWma6eLyA7MOPed81HnVCJfY6oJ2vn/jhUc+
YvX+pDOe00Xb0e8+Y+fzIdd0JPdMvS6MRLkPsFzOR+bIcLyKmh4aZp4Ju1Xk
Y+ceNYUiPT2INgYuNVfmY9TBMGOriR7ozV+XedTkI0K/dn3JVg9PfBN+tTVs
6iu3jBAN14Ney0JBeHs+5Jkqnxx7rAc1696JLz/yUS8fuepoTkQlX2Sj3txm
vy5nxy5ZE8ExKZuW9zMfF2mesaUeI2IhJEnVYCkft+Q+dl05Q0Q9lZhUupGP
ydJq2pQMIhS+3ZSzYSvAi2224Z96iJCMSgl9ol4Ape9jwqwSwAPtqwz7tQrw
IPfqbm4Z4ODy4+wBnQJY2v76xasAhPos3viqX4Atj587MKsDHY4nxln3F4Aa
mryUZwx4aKqZHztRAHf62bKDbsC/hYODn10K0GFBLf1yGiDXebv5uBfgdVRf
VIg30CRx6WK01ybfDCNLTADAyLnjTlVQAda2tBw0iAKu/RrnW0gqAM3jP++i
KIBe7b/qiNQCvFJvEqihAm88udS2ZRTALaCS6XU58Gds/0HenALw1xVx01cB
5q8b40AtQPatvo+id4DpmvSZtNsF2H6l4IvVS0DaXfOx2HABlq7lyzxbADIJ
ln9iRwqw9Uh1M+8ysPDRRXVitACtf4OKz6wCjxzSako/bfZvKCieYR2wPvix
gGumAIuupOMs2/QRph3vx0RTCIWBZq4obn107O4VnhErhLNcvZCBpj7cH3nE
NfgXYmzPgmlgkD5mz06HGAUVYpv7cppdsD5CBc54vw0uxLTyQXedUH2kXPC1
XjlfiCm/s0sb5/VRpxUspJNQiH/XDLNDYvXx717sgzZKIQjtykcVs/U3dZYu
vGkrxEnDwKwtt/TxuLzf7SdHEabGtkf2ftHH2H5h52DuIrhrvF7P/qYPmtWz
9n95i8CTM0xr810fpEPbLBmEirCQUnp3eFYfz7doqfNIF8GY7Vn+zKI+ulzK
mPT1iiDqrNenTk/CsKhXLflUEV5WnqXLFybhb8+9ag7PItwNChQNESGBP4Lu
CsW7CK+/CnTbi5HgNFBSUOFXhDbR12MiUiSMxb+Oagrf5MupYupSJOHL1L7D
YxlF6C248CkIJCxUbywrNBaho70wMOgkCVNHjcuT7xfhzYRY1TlXEobo000/
tRThfl+Pa5g7CS0neIvyW4sQTPfnUpInCTHcqlprL4rwvWbMqd2fhF1JXhde
jhQhtrjjWE8MCbKnB2jcaSl4dx37PKtIEOTgv/aInoIeJh3lvmub9W0uh7i3
USA36mWvf4OE34LzlzqZKbBJq3CRvk1C89vtBsocFHyNOcyn1EKCqTHiNyQo
uNC/rrG3hwRXsRomygEK/l3KMlpcIyH82XEv8YMU8E/PDBtvMQDZna2z3poC
s0tZ/WX0BnhwNSyt05YCYvzZAx7MBmAXN925dpKC+heoseExwHPxSfYTwRSc
js1RaFAzwMjzwnM/QikwMOnqjdcywK9T+9+Gnqcgx+Yz1wk9A+ytulOQtWkc
fxWJDnljA4RKxPC2pWzqbdmuo3bUANKSe4XEyzaNZWWvvBxisGnoN1H1lygY
D2zNsLtggKMeCeN6FRRIzP/H3xZlgNjqmcu21ygY5Hvy+E7yJr/kA7HkOxR8
OxPdSltigAwpe5kf7RQ0Ogt9s3xigJ/SOWr185v53P9altgNMdQFoz2/Kfgj
XZy9wWOIVp/Zw0GLFDQHSrmy7DVERr2Zv9ofCmh1WpTUpQwhrUVzo5muGIHZ
QYyPdA3hYnZWuI2zGPIJ9ye8Thui/7TJjn6dYhj1Pj9wv8UQLUyLvKrEYqgM
G0etthrics1lqXz9Ykg+lJ1Qf24Iv7k1YzvjYvCeWvas7TEES0hD9IhVMR42
GfpETBrCOEF4+bNLMUS2Hft+gdUITRV/xxeTilHeJri6x8kIagZBy+apxTjU
1H+k6aQR7o7/2FGeXozs6jJV21NGqBccVTfPLgZh1MkxztcINwpb00uLi9Ei
O1RZHG2E8rR4TZPaYnhedONtqTBCctDOrMK+YpA+0sb2TBnBwVAE2oIl2DBW
mLjkaIy1fkbWNqEStAsRQo6dMEa5++x7c5ESFImSTux2M8ZUwv0QB8kSFAuU
xAV4GyPghdWtMOUSOMcunN0RbowUywuCTcYlyGZ1ibqdb4xmu4F/+3xLoFgR
+MGm2xh8ZxPvy7eWoLsjqf6utgkyNk6ppj4pgdUxVtpfeiagzTa+/eVpCf7j
95pQIJlg+h7DtfIXJVjNXr9SZ2qyOZfGFbL1lYB/zTK0w8YEDrlRIUuTJfBr
ddBx8zNBYUuY6iNmKvwMClpnqkyww9L+Ni8rFbcWuK8k1pggakxDLmQXFbr8
pznFb5nAg2FFVJGDiuaw+8L+90ygbhXMflmQCidxh9+kZyZ4OxHwO16JChvx
z99/fjIBx/Yztw/YUrEm9XAuVNwUFQYR4fP2VDx5YpjqLWMK5YgMgxxHKmZk
4h94KprCcr5uYOgkFSbpqavJWqZIeLu46nqGiqeOspknrUyxcjmSFB5NRfGn
Bfe685v5ETKzQBx1c/6cuBkZbQp2zsv9jxOoCPYUzHdONIVi8tNTDGlU9J+6
NGmdYwpPX6ZUcj4VAeOsg2w3TDGsndNXuflQ8ew1IhwfN4XHuYoSs1oqss3f
D535aoql2rvuP+qoUDaK2Z47Zwo2wtCy0j0qMr0D4uXXTWHBKMD/sJUKqSPX