You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This work tries to reproduce cGAN (Conditional GAN) refer only to the paper, without any later tricks but an alternative heuristic loss function. See model1.py
Discrinator
Generator
X Input ∈ R^784; y input ∈ $r^10$
z Input ∈ $r^100$; y input ∈ $r^10$
240,5 Maxout; OneHot. 50,5 Maxout.
FC. 1000 RELU; OneHot. FC. 200 RELU
Dropout(0.5). 290,4 Maxout.
Dropout(0.5). FC. 784 RELU. Sigmoid
Dropout(0.5). FC. Sigmoid.
Hype-parameters
learning rate
decay facotr
momentum
optimizer
Values
0.1->0.000001
1.00004
>0.7
SGD
model2.py is used as a contrast model which has additional Batch Normlization layer in Generator.
Discrinator
Generator
X Input ∈ R^784; y input ∈ $r^10$
z Input ∈ $r^100$; y input ∈ $r^10$
240,5 Maxout; OneHot. 50,5 Maxout.
FC. BatchNorm. 1000 RELU; OneHot. FC. BatchNorm. 200 RELU
Dropout(0.5). 290,4 Maxout.
Dropout(0.5). FC. 784 RELU. Sigmoid
Dropout(0.5). FC. Sigmoid.
Result
Name
epoch1
epoch10
epoch50
gif
remarks
Model1
It still need time to converge.
Model2
It shows that BN really herlps accelerating training.