-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
104 lines (83 loc) · 3.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# -*- coding: utf-8 -*-
import os
import torch
import torch.optim as optim
import torch.nn as nn
from torch.autograd import Variable
from torchvision import datasets
import torchvision.transforms as transforms
from torchvision.utils import save_image
from DCGAN.model import Discriminator, Generator, init_weights
batch_size = 32
nz = 100
img_size = 64
samples = "samplesn"
checkpoints = "checkpointsn"
dataset = datasets.LSUN(db_path="../data/lsun", classes=['church_outdoor_train'],
transform=transforms.Compose([
transforms.Scale(img_size),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4)
G = Generator().cuda()
G.apply(init_weights)
D = Discriminator().cuda()
D.apply(init_weights)
# g_checkpoint = torch.load(os.path.join(os.path.dirname(__file__), "checkpoints", "G", "48.pth"))
# G.load_state_dict(g_checkpoint)
# d_checkpoint = torch.load(os.path.join(os.path.dirname(__file__), "checkpoints", "D", "48.pth"))
# D.load_state_dict(d_checkpoint)
criterion = nn.BCELoss().cuda()
# setup optimizer
d_optimizer = optim.Adam(D.parameters(), lr=0.0002, betas=(0.5, 0.999))
g_optimizer = optim.Adam(G.parameters(), lr=0.0002, betas=(0.5, 0.999))
fixed_noise = Variable(torch.FloatTensor(batch_size, nz, 1, 1).normal_(0, 1).cuda())
for epoch in range(100):
for i, (x, _) in enumerate(dataloader, 0):
# Alternating Gradient Descent
b_size = x.size(0)
# ===================
# train Discriminator
# ===================
D.zero_grad()
x = x.cuda()
# The paper uses unifrom distribution, maybe it is better to use gaussian distribution
z = torch.randn(b_size, nz, 1, 1).cuda()
# z = torch.rand(b_size, nz, 1, 1).cuda()
fake = G(Variable(z))
real_labels = Variable(torch.ones(b_size).cuda() - 0.1) # one-sided smoonth
fake_labels = Variable(torch.zeros(b_size).cuda())
# alternative loss
d_real = D(Variable(x))
d_loss_real = criterion(d_real, real_labels)
d_loss_real.backward()
d_fake = D(fake.detach())
d_loss_fake = criterion(d_fake, fake_labels)
d_loss_fake.backward()
d_loss = d_loss_real + d_loss_fake
d_optimizer.step()
d_x = d_real.data.mean()
d_g_z1 = d_fake.data.mean()
# ********************************************************
# ===================
# train Generator
# ===================
G.zero_grad()
g_output = D(fake) # train with updated Discriminator
g_loss = criterion(g_output, real_labels) # G tries to fool D
g_loss.backward()
d_g_z2 = g_output.data.mean()
g_optimizer.step()
# ********************************************************
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f'
% (epoch, 100, i, len(dataloader),
d_loss.data[0], g_loss.data[0], d_x, d_g_z1, d_g_z2))
if i % 100 == 0:
save_image(x, '{dir}/real/{e}_{i}.png'.format(dir=samples, e=epoch, i=i), normalize=True)
fake = G(fixed_noise)
save_image(fake.data, '{dir}/fake/{e}_{i}.png'.format(dir=samples, e=epoch, i=i), normalize=True)
# do checkpointing
torch.save(G.state_dict(), '{dir}/G/{e}.pth'.format(dir=checkpoints, e=epoch))
torch.save(D.state_dict(), '{dir}/D/{e}.pth'.format(dir=checkpoints, e=epoch))