diff --git a/launcher/src/main.rs b/launcher/src/main.rs index acff8573012..2e22c100767 100644 --- a/launcher/src/main.rs +++ b/launcher/src/main.rs @@ -158,7 +158,7 @@ fn resolve_attention(config: &Option, lora_adapters: &Option) -> prefix_caching = Some("0".to_string()); } match config.model_type.as_deref() { - Some("falcon") | Some("deepseek_v2") => { + Some("falcon") | Some("deepseek_v2") | Some("llama4") => { // Required because gemma2 needs bfloat16 which is not supported by // flashinfer ? if attention.is_none() { diff --git a/server/text_generation_server/models/transformers_flash_vlm.py b/server/text_generation_server/models/transformers_flash_vlm.py index a7beb68b39b..c1852a4f027 100644 --- a/server/text_generation_server/models/transformers_flash_vlm.py +++ b/server/text_generation_server/models/transformers_flash_vlm.py @@ -1,5 +1,5 @@ import math -from typing import List, Optional +from typing import List, Optional, Tuple, Dict import torch from opentelemetry import trace @@ -12,8 +12,10 @@ from text_generation_server.layers.attention import paged_attention, attention, Seqlen from text_generation_server.layers.attention.kv_cache import KVScales, KVCache -from text_generation_server.models.globals import ATTENTION +from text_generation_server.models.globals import ATTENTION, BLOCK_SIZE, MEM_POOL +from text_generation_server.models.metadata_kernels import block_tables_to_ragged import torch.nn.functional as F +import numpy as np tracer = trace.get_tracer(__name__) @@ -27,6 +29,126 @@ ] +def cdiv(a: int, b: int) -> int: + """Ceiling division.""" + return -(a // -b) + + +# Adapted from: https://github.com/vllm-project/vllm/blob/e1a2c699dda82199e88e433c144eae66f3b31878/vllm/v1/attention/backends/flash_attn.py +def make_local_attention_virtual_batches( + attn_chunk_size: int, + query_start_loc_np: np.ndarray, + seq_lens_np: np.ndarray, + block_table: torch.Tensor, + page_size: int = 0, +) -> tuple[np.ndarray, np.ndarray, np.ndarray, torch.Tensor]: + q_seqlens = query_start_loc_np[1:] - query_start_loc_np[:-1] + actual_batch_size = seq_lens_np.shape[0] + # Handle if we are starting in the middle of a local attention block, + # we assume q_seqlens > 0 (for all elements), for each batch idx we compute + # the number of tokens that are not in the first local attention block and + # then we can simply use a cdiv for the rest. + # For example if we have: + # attn_chunk_size = 4 + # q_seqlens = [4, 10, 5] + # k_seqlens = [6, 17, 9] + # Then we would get: + # new_tokens_in_first_block = [2, 1, 4] + # local_blocks = [2, 4, 2] + q_tokens_in_first_block = np.minimum( + attn_chunk_size - ((seq_lens_np - q_seqlens) % attn_chunk_size), q_seqlens + ).astype(np.int32) + tokens_in_last_block = attn_chunk_size + (seq_lens_np % -attn_chunk_size) + local_blocks = 1 + cdiv(q_seqlens - q_tokens_in_first_block, attn_chunk_size) + + # Once we know the number of local blocks we can compute the request spans + # for each batch idx, we can figure out the number of "virtual" requests we + # have to make, + # For the above example we would get: + # seqlens_q_local = [2, 2, 1, 4, 4, 1, 4, 1] + # + # First Get batched arange. (E.g., [2, 4, 2] -> [0, 1, 0, 1, 2, 3, 0, 1]) + # (TODO: max a utility to share this code with _prepare_inputs) + # arange step 1. [2, 4, 2] -> [2, 6, 8] + cu_num_blocks = np.cumsum(local_blocks) + virtual_batches = cu_num_blocks[-1] + # arange step 2. [2, 6, 8] -> [0, 0, 2, 2, 2, 2, 6, 6] + block_offsets = np.repeat(cu_num_blocks - local_blocks, local_blocks) + # arange step 3. [0, 1, 0, 1, 2, 3, 0, 1] + arange = np.arange(virtual_batches, dtype=np.int32) - block_offsets + # also compute reverse arange (i.e. [1, 0, 3, 2, 1, 0, 1, 0]) + rarange = np.repeat(local_blocks, local_blocks) - arange - 1 + # Then we can compute the seqlens_q_local, handling the fact that the + # first and last blocks could be partial + seqlens_q_local = np.repeat(q_seqlens - q_tokens_in_first_block, local_blocks) + # set the first block since this may be a partial block + seqlens_q_local[arange == 0] = q_tokens_in_first_block + # set the remaining blocks + seqlens_q_local[arange > 0] = np.minimum( + seqlens_q_local - attn_chunk_size * (arange - 1), attn_chunk_size + )[arange > 0] + + # convert from q_seqlens to cu_seqlens_q + cu_seqlens_q_local = np.pad(np.cumsum(seqlens_q_local), (1, 0)).astype(np.int32) + + # compute the seqlens_k_local, + # basically a full local attention block for all but the last block in each + # batch + # For our example this will be: + # seqlens_k_local = [4, 2, 4, 4, 4, 1, 4, 1] + seqlens_k_local = np.full(cu_num_blocks[-1], attn_chunk_size, dtype=np.int32) + seqlens_k_local[cu_num_blocks - 1] = tokens_in_last_block + + if ATTENTION == "flashdecoding": + k_seqstarts_absolute = np.repeat(seq_lens_np, local_blocks) - ( + rarange * attn_chunk_size + np.repeat(tokens_in_last_block, local_blocks) + ) + + # For the example the local attention blocks start at: + # _b0_ _____b1_____ _b2_ + # k_seqstarts_absolute = [0, 4, 4, 8, 12, 16, 4, 8] + block_starts = k_seqstarts_absolute // page_size + assert attn_chunk_size % page_size == 0, ( + f"attn_chunk_size {attn_chunk_size} is not " + f"divisible by page_size {page_size}" + ) + pages_per_local_batch = attn_chunk_size // page_size + + # Create a block_table for the local attention blocks + # For out example if we have a block-table like (assuming page_size=2): + # block_table = [ + # [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], < batch 0 + # [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], < batch 1 + # [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], < batch 2 + # ] + # Then for the local batches we would want a block-table like + # block_table_local = [ + # [ 0, 1 ], < local-batch 0, (batch 0, starting from k[0]) + # [ 2, 3 ], < local-batch 1, (batch 0, starting from k[4]) + # [ 12, 13 ], < local-batch 2, (batch 1, starting from k[4]) + # [ 14, 15 ], < local-batch 3, (batch 1, starting from k[8]) + # [ 16, 17 ], < local-batch 4, (batch 1, starting from k[12]) + # [ 18, 19 ], < local-batch 5, (batch 1, starting from k[16]) + # [ 22, 23 ], < local-batch 6, (batch 2, starting from k[4]) + # [ 24, 25 ], < local-batch 7, (batch 2, starting from k[8]) + # ] + block_indices = np.broadcast_to( + np.arange(pages_per_local_batch, dtype=np.int32), + (virtual_batches, pages_per_local_batch), + ) + np.expand_dims(block_starts, axis=1) + block_indices = block_indices.flatten().clip(max=block_table.shape[1] - 1) + batch_indices = np.repeat( + np.arange(actual_batch_size, dtype=np.int32), + local_blocks * pages_per_local_batch, + ) + block_table_local = block_table[batch_indices, block_indices].view( + virtual_batches, -1 + ) + else: + block_table_local = block_table + return seqlens_q_local, cu_seqlens_q_local, seqlens_k_local, block_table_local + + # # Qwen2VL # transformers.models.qwen2_vl.modeling_qwen2_vl.QWEN2_VL_VISION_ATTENTION_CLASSES[ # "tgi" @@ -51,8 +173,14 @@ def tgi_flash_attention_forward( sliding_window: Optional[int] = None, softcap: Optional[float] = None, use_sdpa: Optional[bool] = False, + seqlen_local: Optional[Seqlen] = None, + block_tables_local: Optional[torch.Tensor] = None, **kwargs, # This is needed to "absorb" other args passed by Transformers modeling ): + if hasattr(module, "use_rope") and module.use_rope: + seqlen = seqlen_local + block_tables = block_tables_local + kv_cache = kv_cache[module.layer_idx] query_states = query_states.transpose(1, 2).squeeze(dim=0) key_states = key_states.transpose(1, 2).squeeze(dim=0) @@ -313,7 +441,9 @@ def __init__( def get_position_ids(self, input_ids, image_grid_thw, position_ids): return position_ids - def pre_process_inputs(self, input_ids, position_ids, cu_seqlen_prefill): + def pre_process_inputs(self, **kwargs): + input_ids = kwargs["input_ids"] + position_ids = kwargs["position_ids"] return { "input_ids": input_ids.unsqueeze(0), "position_ids": position_ids.unsqueeze(0), @@ -364,7 +494,10 @@ def _model_forward( image_grid_thw: Optional[torch.LongTensor] = None, pixel_attention_mask=None, image_sizes: Optional[torch.LongTensor] = None, + seqlen_local: Optional[Seqlen] = None, + block_tables_local: Optional[torch.Tensor] = None, ): + # A value of `None` (i.e. no logit slicing) translates to `0` in Transformers logits_to_keep = lm_head_indices if lm_head_indices is not None else 0 @@ -372,7 +505,10 @@ def _model_forward( input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=cu_seqlen_prefill, + seqlen=seqlen, + block_tables=block_tables, ) + # This is equivalent to `self.model.forward`, see the monkey patch in __init__ logits = self.model.original_forward( input_ids=inputs["input_ids"], @@ -396,6 +532,8 @@ def _model_forward( attention_mask=inputs.get("attention_mask", None), use_sdpa=inputs.get("use_sdpa", False), cache_position=inputs.get("cache_position", None), + seqlen_local=seqlen_local, + block_tables_local=block_tables_local, ).logits logits = self.post_process_outputs(logits, lm_head_indices) @@ -480,7 +618,10 @@ def get_position_ids(self, input_ids: torch.Tensor, image_grid_thw: torch.Tensor def post_process_outputs(self, logits, lm_head_indices): return logits.squeeze(dim=0)[lm_head_indices].unsqueeze(0) - def pre_process_inputs(self, input_ids, position_ids, cu_seqlen_prefill): + def pre_process_inputs(self, **kwargs): + input_ids = kwargs["input_ids"] + position_ids = kwargs["position_ids"] + input_ids = input_ids.unsqueeze(0) position_ids = position_ids.transpose(0, 1).unsqueeze(1) return {"input_ids": input_ids, "position_ids": position_ids} @@ -542,7 +683,11 @@ def get_attention_mask(self, input_ids, cu_seqlen_prefill): return final_attention_mask - def pre_process_inputs(self, input_ids, position_ids, cu_seqlen_prefill): + def pre_process_inputs(self, **kwargs): + input_ids = kwargs["input_ids"] + position_ids = kwargs["position_ids"] + cu_seqlen_prefill = kwargs["cu_seqlen_prefill"] + inputs = { "input_ids": input_ids.unsqueeze(0), "position_ids": position_ids.unsqueeze(0), @@ -559,8 +704,482 @@ def pre_process_inputs(self, input_ids, position_ids, cu_seqlen_prefill): class TransformersLlama4VlmCausalLM(TransformersFlashVlmCausalLM): - def pre_process_inputs(self, input_ids, position_ids, cu_seqlen_prefill): - inputs = super().pre_process_inputs(input_ids, position_ids, cu_seqlen_prefill) + def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int): + max_bs = max(self.cuda_graphs.keys()) if self.cuda_graphs else None + input_lengths = [max_s] * bs + cache_lengths = [0] * bs + if max_bs is None: + input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device) + position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device) + config = getattr(self.model, "config", None) + rope_scaling = getattr(config, "rope_scaling", None) if config else None + if ( # mrope have position_ids per section, if so repeat n times + isinstance(rope_scaling, dict) and rope_scaling["rope_type"] == "mrope" + ): + n_sections = len(self.model.config.rope_scaling["mrope_section"]) + position_ids = position_ids.unsqueeze(1).repeat(1, n_sections) + slots = torch.arange(bs, dtype=torch.int64, device=self.device) + input_lengths_tensor = ( + torch.ones(bs, dtype=torch.int32, device=self.device) * max_s + ) + cache_lengths_tensor = torch.zeros( + bs, dtype=torch.int32, device=self.device + ) + block_tables = torch.arange( + max_bt, dtype=torch.int32, device=self.device + ).repeat(bs) + block_tables = block_tables.reshape((bs, max_bt)) + if ATTENTION == "flashinfer": + block_tables = block_tables_to_ragged( + block_tables=block_tables, + input_lengths=input_lengths, + cache_lengths=cache_lengths, + input_lengths_tensor=input_lengths_tensor, + cache_lengths_tensor=cache_lengths_tensor, + max_current_length=max_s, + ) + + cu_seqlen_q = torch.arange( + input_lengths_tensor.shape[0] + 1, + device=self.device, + dtype=torch.int32, + ) + + ( + input_lengths_tensor_local, + cache_lengths_tensor_local, + seqlens_q_local, + max_q, + max_k, + block_tables_local, + ) = self.get_chunked_attention_seqlen( + cu_seqlen_q, + input_lengths_tensor, + block_tables, + ) + self.max_k_local = max_k + else: + if bs > max_bs: + raise RuntimeError( + "Cuda graphs should be generated in decreasing order size to reduce VRAM usage" + ) + input_ids = self.cuda_graphs[max_bs]["input_ids"][:bs] + position_ids = self.cuda_graphs[max_bs]["position_ids"][:bs] + if ATTENTION == "flashinfer": + block_tables = self.cuda_graphs[max_bs]["block_tables"][: bs * max_bt] + else: + block_tables = self.cuda_graphs[max_bs]["block_tables"][:bs] + block_tables_local = self.cuda_graphs[max_bs]["block_tables_local"][:bs] + slots = self.cuda_graphs[max_bs]["slots"][:bs] + input_lengths_tensor = self.cuda_graphs[max_bs]["input_lengths"][:bs] + cache_lengths_tensor = self.cuda_graphs[max_bs]["cache_lengths"][:bs] + + input_lengths_tensor_local = self.cuda_graphs[max_bs][ + "input_lengths_local" + ][:bs] + cache_lengths_tensor_local = self.cuda_graphs[max_bs][ + "cache_lengths_local" + ][:bs] + seqlens_q_local = self.cuda_graphs[max_bs]["seqlens_q_local"][:bs] + + if ATTENTION == "flashinfer": + from text_generation_server.layers.attention.flashinfer import ( + create_decode_state_cuda_graphs, + ) + + block_tables_ptr = torch.zeros( + bs + 1, dtype=torch.int32, device=self.device + ) + last_page_len = torch.ones(bs, dtype=torch.int32, device=self.device) + state = create_decode_state_cuda_graphs( + device=input_ids.device, + block_tables=block_tables, + block_tables_ptr=block_tables_ptr, + last_page_len=last_page_len, + num_heads=self.num_heads, + num_kv_heads=self.num_kv_heads, + ) + else: + state = None + + graph = torch.cuda.CUDAGraph() + self.cuda_graphs[bs] = { + "input_ids": input_ids, + "position_ids": position_ids, + "kv_cache": self.kv_cache, + "block_tables": block_tables, + "slots": slots, + "input_lengths": input_lengths_tensor, + "cache_lengths": cache_lengths_tensor, + "input_lengths_local": input_lengths_tensor_local, + "cache_lengths_local": cache_lengths_tensor_local, + "seqlens_q_local": seqlens_q_local, + "block_tables_local": block_tables_local, + "state": state, + "graph": graph, + } + + torch.cuda.synchronize() + # Run once outside to warmup + with self._forward_context( + block_tables=block_tables, + cu_seqlen_prefill=None, + input_lengths_tensor=input_lengths_tensor, + state=state, + cache_lengths_tensor=cache_lengths_tensor, + ): + seqlen = Seqlen( + input_lengths=input_lengths_tensor, + cache_lengths=cache_lengths_tensor, + cu_seqlen_q=None, + max_q=1, + max_k=max_s, + ) + # cu_seqlens_q_local = F.pad( + # torch.cumsum(seqlens_q_local, dim=0), (1, 0), value=0 + # ).to(torch.int32) + seqlen_local = Seqlen( + input_lengths=input_lengths_tensor_local, + cache_lengths=cache_lengths_tensor_local, + cu_seqlen_q=None, + max_q=1, + max_k=input_lengths_tensor_local.max(), + ) + self.model.forward( + input_ids=input_ids, + position_ids=position_ids, + cu_seqlen_prefill=None, + kv_cache=self.kv_cache, + block_tables=block_tables, + slots=slots, + seqlen=seqlen, + max_s=max_s, + prefill_cache_indices=None, + lm_head_indices=None, + seqlen_local=seqlen_local, + block_tables_local=block_tables_local, + ) + del seqlen + del seqlen_local + + torch.cuda.synchronize() + + with torch.cuda.graph(graph, pool=MEM_POOL): + seqlen = Seqlen( + input_lengths=input_lengths_tensor, + cache_lengths=cache_lengths_tensor, + cu_seqlen_q=None, + max_q=1, + max_k=max_s, + ) + # cu_seqlens_q_local = F.pad( + # torch.cumsum(seqlens_q_local, dim=0), (1, 0), value=0 + # ).to(torch.int32) + seqlen_local = Seqlen( + input_lengths=input_lengths_tensor_local, + cache_lengths=cache_lengths_tensor_local, + cu_seqlen_q=None, + max_q=1, + max_k=input_lengths_tensor_local.max(), + ) + logits, speculative_logits = self.model.forward( + input_ids=input_ids, + position_ids=position_ids, + cu_seqlen_prefill=None, + kv_cache=self.kv_cache, + block_tables=block_tables, + slots=slots, + seqlen=seqlen, + max_s=max_s, + prefill_cache_indices=None, + lm_head_indices=None, + seqlen_local=seqlen_local, + block_tables_local=block_tables_local, + ) + self.cuda_graphs[bs]["logits"] = logits + self.cuda_graphs[bs]["speculative_logits"] = speculative_logits + torch.cuda.synchronize() + + def get_chunked_attention_seqlen( + self, + cu_seqlen_q, + seq_lens_np, + block_tables, + ): + attention_chunk_size = self.model.config.text_config.attention_chunk_size + # seq_lens_np = cu_seqlen_k[1:] - cu_seqlen_k[:-1] + + ( + seqlens_q_local_np, + virt_q_cu_seqlens_np, + virt_k_seqlens_np, + virt_block_table, + ) = make_local_attention_virtual_batches( + attention_chunk_size, + ( + cu_seqlen_q.cpu().numpy() + if isinstance(cu_seqlen_q, torch.Tensor) + else cu_seqlen_q + ), + seq_lens_np.cpu().numpy(), + block_tables, + BLOCK_SIZE, + ) + + input_lengths = torch.from_numpy(virt_k_seqlens_np).to( + cu_seqlen_q.device, non_blocking=True + ) + cache_lengths = torch.zeros(virt_k_seqlens_np.shape).to( + cu_seqlen_q.device, non_blocking=True + ) + seqlens_q_local = torch.from_numpy(seqlens_q_local_np).to( + cu_seqlen_q.device, non_blocking=True + ) + + max_q = int(seqlens_q_local_np.max()) + max_k = int(virt_k_seqlens_np.max()) + + return ( + input_lengths, + cache_lengths, + seqlens_q_local, + max_q, + max_k, + virt_block_table, + ) + + def pre_process_inputs(self, **kwargs): + input_ids = kwargs["input_ids"] + position_ids = kwargs["position_ids"] + + inputs = super().pre_process_inputs(**kwargs) inputs["cache_position"] = position_ids inputs["attention_mask"] = torch.zeros((1, 1, 1, 1), device=input_ids.device) + return inputs + + def forward( + self, + batch: VlmCausalLMBatch, + adapter_data: Optional[Dict[str, torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + # Model Forward + if batch.speculative_ids is not None: + input_ids = batch.input_ids + position_ids = batch.position_ids + cu_seqlen_prefill = batch.cu_seqlen_prefill + kv_cache = self.kv_cache + block_tables = batch.block_tables_tensor + slots = batch.slots[batch.slot_indices] + input_lengths = batch.input_lengths_tensor + max_s = batch.max_current_length + lm_head_indices = batch.prefill_head_indices + + speculative_ids = batch.speculative_ids + + B, speculative_length = speculative_ids.shape + new_length = speculative_length + 1 + new_input_ids = torch.cat( + [input_ids.unsqueeze(-1), speculative_ids], dim=1 + ).reshape(-1) + arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0) + arange_int = arange.to(dtype=torch.int32) + new_position_ids = ( + position_ids.unsqueeze(-1).expand(B, new_length) + arange + ).view(-1) + slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1) + input_lengths = ( + input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int + ).view(-1) + cache_lengths_tensor = ( + batch.cache_lengths_tensor.unsqueeze(-1).expand(B, new_length) + ).reshape(-1) + + # Add Copy the block tables for all members + block_tables = ( + block_tables.unsqueeze(1) + .expand(B, new_length, -1) + .reshape(B * new_length, -1) + .contiguous() + ) + max_s = max_s + speculative_length + + input_ids = new_input_ids + position_ids = new_position_ids + else: + input_ids = batch.input_ids + position_ids = batch.position_ids + cu_seqlen_prefill = batch.cu_seqlen_prefill + kv_cache = self.kv_cache + block_tables = batch.block_tables_tensor + slots = batch.slots[batch.slot_indices] + input_lengths = batch.input_lengths_tensor + cache_lengths_tensor = batch.cache_lengths_tensor + max_s = batch.max_current_length + lm_head_indices = batch.prefill_head_indices + + if self.model.config.model_type in {"qwen2_vl", "qwen2_5_vl"}: + if position_ids.dim() == 1 and batch.prefilling: + position_ids = self.model.get_position_ids( + input_ids, batch.image_grid_thw + ) + batch.position_ids = position_ids + + # Try to find an associated cuda graph + bs = input_ids.shape[0] + sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs]) + if sorted_padded_bs: + # Get associated cuda graph + cuda_graph = self.cuda_graphs[sorted_padded_bs[0]] + else: + cuda_graph = None + + cu_seqlen_q = ( + cu_seqlen_prefill + if cu_seqlen_prefill is not None + else torch.arange( + input_lengths.shape[0] + 1, dtype=torch.int32, device=input_ids.device + ) + ) + ( + input_lengths_tensor_local, + cache_lengths_tensor_local, + seqlens_q_local, + max_q, + max_k, + block_tables_local, + ) = self.get_chunked_attention_seqlen( + cu_seqlen_q=cu_seqlen_q, + seq_lens_np=input_lengths + cache_lengths_tensor, + block_tables=block_tables, + ) + + if cu_seqlen_prefill is not None or cuda_graph is None: + if ATTENTION == "flashinfer": + block_tables = block_tables_to_ragged( + block_tables=block_tables, + input_lengths=batch.input_lengths, + cache_lengths=batch.cache_lengths, + input_lengths_tensor=batch.input_lengths_tensor, + cache_lengths_tensor=batch.cache_lengths_tensor, + max_current_length=batch.max_current_length, + ) + raise RuntimeError("Flashinfer for LLama4 is not supported yet") + with self._forward_context( + block_tables=block_tables, + cu_seqlen_prefill=cu_seqlen_prefill, + input_lengths_tensor=input_lengths, + cache_lengths_tensor=cache_lengths_tensor, + ): + seqlen = Seqlen( + input_lengths=input_lengths, + cache_lengths=cache_lengths_tensor, + cu_seqlen_q=cu_seqlen_prefill, + max_q=batch.max_input_length, + max_k=batch.max_current_length, + ) + + cu_seqlens_q_local = F.pad( + torch.cumsum(seqlens_q_local, dim=0), (1, 0), value=0 + ).to(torch.int32) + seqlen_local = Seqlen( + input_lengths=input_lengths_tensor_local, + cache_lengths=cache_lengths_tensor_local, + cu_seqlen_q=cu_seqlens_q_local, + max_q=max_q, + max_k=max_k, + ) + + logits, speculative_logits = self.model.forward( + input_ids=input_ids, + position_ids=position_ids, + cu_seqlen_prefill=cu_seqlen_prefill, + kv_cache=kv_cache, + block_tables=block_tables, + slots=slots, + seqlen=seqlen, + max_s=max_s, + prefill_cache_indices=batch.prefill_cache_indices, + lm_head_indices=lm_head_indices, + pixel_values=batch.pixel_values, + pixel_attention_mask=batch.pixel_attention_mask, + image_sizes=batch.image_sizes, + image_grid_thw=batch.image_grid_thw, + seqlen_local=seqlen_local, + block_tables_local=block_tables_local, + ) + if batch.prefill_cache_indices is not None: + batch.prefill_cache_indices = None + if batch.pixel_values is not None: + batch.pixel_values = None + if batch.pixel_attention_mask is not None: + batch.pixel_attention_mask = None + if batch.image_sizes is not None: + batch.image_sizes = None + if batch.image_grid_thw is not None: + batch.image_grid_thw = None + return logits, speculative_logits + + # Copy inputs to the static inputs of the cuda graph + # Static inputs are potentially padded + cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids + cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids + if ATTENTION == "flashinfer": + block_tables = block_tables_to_ragged( + block_tables=block_tables, + input_lengths=batch.input_lengths, + cache_lengths=batch.cache_lengths, + input_lengths_tensor=batch.input_lengths_tensor, + cache_lengths_tensor=batch.cache_lengths_tensor, + max_current_length=batch.max_current_length, + ) + cuda_graph["block_tables"][: block_tables.shape[0]] = block_tables + raise RuntimeError("Flashinfer for LLama4 is not supported yet") + else: + cuda_graph["block_tables"][ + : block_tables.shape[0], : block_tables.shape[1] + ] = block_tables + + cuda_graph["block_tables_local"][ + : block_tables_local.shape[0], : block_tables_local.shape[1] + ] = block_tables_local + + # XXX: This is working only because block 0 is reserved for the healthcheck + # so it doesn't matter if we override it with bogus values. + cuda_graph["slots"].fill_(0) + cuda_graph["slots"][: slots.shape[0]] = slots + cuda_graph["input_lengths"].zero_() + cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths + cuda_graph["cache_lengths"].zero_() + cuda_graph["cache_lengths"][ + : cache_lengths_tensor.shape[0] + ] = cache_lengths_tensor + cuda_graph["input_lengths_local"].zero_() + cuda_graph["input_lengths_local"][ + : input_lengths_tensor_local.shape[0] + ] = input_lengths_tensor_local + cuda_graph["cache_lengths_local"].zero_() + cuda_graph["cache_lengths_local"][ + : cache_lengths_tensor_local.shape[0] + ] = cache_lengths_tensor_local + cuda_graph["seqlens_q_local"].zero_() + cuda_graph["seqlens_q_local"][: seqlens_q_local.shape[0]] = seqlens_q_local + + with self._forward_context( + block_tables=cuda_graph["block_tables"], + cu_seqlen_prefill=None, + input_lengths_tensor=cuda_graph["input_lengths"], + cache_lengths_tensor=cuda_graph["cache_lengths"], + state=cuda_graph["state"], + ): + # Replay the graph + cuda_graph["graph"].replay() + + # Slice output to the correct shape + speculative_logits = ( + cuda_graph["speculative_logits"][:bs] + if cuda_graph["speculative_logits"] is not None + else None + ) + logits = cuda_graph["logits"][:bs] + return logits, speculative_logits