-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy patheval_fids.py
291 lines (253 loc) · 11.1 KB
/
eval_fids.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import time
import yaml
import argparse
import traceback
import numpy as np
from tqdm import tqdm
from glob import glob
from easydict import EasyDict
import torch
from torch import nn
torch.backends.cudnn.benchmark = True
#torch.autograd.set_detect_anomaly(True)
from dataset import MultiResolutionDataset
from libs.fid import eval_fid
from libs.inception_score import inception_score
from libs.calc_inception import load_patched_inception_v3
from latent_sampler import LatentSampler
from utils import *
from quant_eval_utils import QuantEvalSampleGenerator, QuantEvalDataLoader
SET_TEST_ID = True # Making testing-time randomized noise inputs from StyleGAN2 fixed
TB_PARTITION_STEPS = 100000 # Partition event file for efficient rsync
def eval(args, latent_sampler, g_ema, inception, device, config):
if g_ema is not None:
g_ema.eval()
"""
Cast FID calculation spec
"""
if hasattr(config.train_params, "extra_pre_resize"):
real_data_res = config.train_params.extra_pre_resize
else: # StyleGAN2 baseline
assert config.train_params.styleGAN2_baseline
real_data_res = config.train_params.full_size
assert real_data_res in {128, 256}, "In this paper, we only benchmark in size {128, 256}. Got {}.".format(real_data_res)
eval_gen_res = real_data_res * args.scale
# InfinityGAN is trained with larger image, so the same resolution equivalents to smaller FoV.
# Here, we ensures the FoV is the same as the StyleGAN2 baseline
fov_scale = config.train_params.full_size / real_data_res
raw_gen_res = int(np.ceil(eval_gen_res * fov_scale))
if args.seq_inference:
assert (not hasattr(config.train_params, "styleGAN2_baseline")) or (not config.train_params.styleGAN2_baseline)
assert args.scale > 1, "Set sequential inference with scale==1 is meaningless"
use_seq_inf = True
else:
use_seq_inf = False
"""
Create dataloader and generator
"""
if args.img_folder is not None:
postprocessing_params = [
["assert", eval_gen_res],
["resize", real_data_res],
]
else:
postprocessing_params = [
["scale", 1 / fov_scale],
["crop", eval_gen_res],
["resize", real_data_res],
]
fake_generator = \
QuantEvalSampleGenerator(
g_ema,
latent_sampler,
img_folder=args.img_folder, # if applicable
output_size=raw_gen_res,
use_seq_inf=use_seq_inf,
postprocessing_params=postprocessing_params,
fid_type=args.type,
device=device,
config=config,
use_pil_resize=args.use_pil_resize)
stats_key = "benchmark-{}-{}-RealRes{}".format(
args.type, config.data_params.dataset, real_data_res)
# FID statistics can be different for different PyTorch version, not sure about cuda
stats_key += f"_PT{torch.__version__}_cu{torch.version.cuda}"
fid_cache_path = os.path.join(".fid-cache/", stats_key+".pkl")
if os.path.exists(fid_cache_path):
if args.clear_fid_cache:
os.remove(fid_cache_path)
use_cache = False
else:
use_cache = True
else:
use_cache = False
if not use_cache:
dataset = MultiResolutionDataset(
split="train",
config=config,
is_training=False,
# return "full" of real full images and crop on-the-fly
disable_extra_cropping=True,
simple_return_full=True,
override_full_size=real_data_res)
real_dataloader = QuantEvalDataLoader(dataset, real_data_res, device, config)
else:
real_dataloader = None
"""
Eval
"""
st = time.time()
if args.metric == "is":
assert args.scale == 1, "We didn't implement scaleinv IS."
n_batch = int(np.ceil(config.test_params.n_fid_sample / config.train_params.batch_size))
all_imgs = []
for img_batch in tqdm(fake_generator(n_batch), total=n_batch):
img_batch = ((img_batch + 1) / 2).cpu() # [-1, 1] => [0, 1]
all_imgs.append(img_batch)
all_imgs = torch.cat(all_imgs, 0)
is_mean, is_std = inception_score(all_imgs, device="cuda", batch_size=config.train_params.batch_size, resize=False, splits=10)
print(" [*] IS time spend {}".format(args.type, time.time()-st))
print(" [*] IS at eval_gen_res {} is {}+-{} (ckpt patch FID = {})".format(
eval_gen_res, is_mean, is_std, config.var.best_fid))
elif args.metric == "fid":
if args.type == "spatial":
fid = eval_fid(
real_dataloader, fake_generator, inception, stats_key, None, device, config,
spatial_partition_cat=True, assert_eval_shape=real_data_res)
elif args.type in {"scaleinv", "alis"}:
fid = eval_fid(
real_dataloader, fake_generator, inception, stats_key, None, device, config,
spatial_partition_cat=False, assert_eval_shape=real_data_res)
else:
raise NotImplementedError("Unknown FID variant {}".format(args.type))
print(" [*] {} FID time spend {}".format(args.type, time.time()-st))
print(" [*] FID (type {}) at eval_gen_res {} is {} (ckpt patch FID = {})".format(
args.type, eval_gen_res, fid, config.var.best_fid))
"""
Setup Logging
"""
if args.metric == "is":
log_root = os.path.join("logs-quant", "IS")
filename = f"EvalGenRes{eval_gen_res}-Exp-{config.var.exp_name}.txt"
score = "{:.6f}+-{:.6f}\n".format(is_mean, is_std)
else:
log_root = os.path.join("logs-quant", "FID-"+args.type)
filename = f"Scale{args.scale}-EvalGenRes{eval_gen_res}-Exp-{config.var.exp_name}.txt"
score = "{:.6f}\n".format(fid)
if not os.path.exists(log_root):
os.makedirs(log_root)
with open(os.path.join(log_root, filename), "a") as lf:
lf.write(score)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config", type=str)
parser.add_argument("--batch-size", type=int, default=None)
parser.add_argument("--scale", type=int, default=1)
parser.add_argument("--type", type=str, choices=["default", "scaleinv", "spatial", "alis"], default="default")
parser.add_argument("--seq-inference", action="store_true")
parser.add_argument("--alis-config", type=str, default=None)
parser.add_argument("--metric", type=str, choices=["fid", "is"], default="fid")
# Other evaluation methods other than <exp_name>/ckpt/best_fid.pth.tar
parser.add_argument("--ckpt", type=str, default=None)
parser.add_argument("--img-folder", type=str, default=None)
parser.add_argument("--use-pil-resize", action="store_true")
parser.add_argument("--verbose", action="store_true", default=False)
parser.add_argument("--archive-mode", action="store_true", default=False)
parser.add_argument("--clear-fid-cache", action="store_true", default=False)
args = parser.parse_args()
if args.verbose:
def annoy_print(x):
torch.cuda.synchronize()
print(x, end="")
else:
annoy_print = dummy_func
with open(args.config, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
config = EasyDict(config)
config.var = EasyDict()
config.var.exp_name = os.path.basename(args.config).split(".yaml")[0]
print(" [*] Config {} loaded!".format(args.config))
if args.type == "alis":
assert args.alis_config is not None, "Evaluate alis fid must specify a config!"
with open(args.alis_config, "r") as f:
config.task = EasyDict(yaml.load(f, Loader=yaml.FullLoader))
config.task.config_name = os.path.basename(args.alis_config).split(".yaml")[0]
config.task.config_path = args.alis_config
config.train_params.batch_size = config.task.batch_size # Usually 1, never tested other cases.
config.task.save_type = "patches-centercrop" # FID requires shape-aligned patches
print(" [*] ALIS eval config {} loaded!".format(args.alis_config))
if args.archive_mode:
config.var.log_dir = "../../" # We are running in ./logs/<exp_name>/codes/
else:
config.var.log_dir = "./logs/"
# Remove previous error file (will make confusion on log synchronizing)
error_f = os.path.join(config.var.log_dir, config.var.exp_name, "error-log.txt")
if os.path.exists(error_f):
os.remove(error_f)
if "CUDA_VISIBLE_DEVICES" in os.environ:
n_gpu = len(os.environ["CUDA_VISIBLE_DEVICES"].split(","))
config.var.dataparallel = n_gpu > 1
config.var.n_gpu = n_gpu
else:
raise ValueError(" [!] Please specify CUDA_VISIBLE_DEVICES!")
if args.batch_size is not None:
config.train_params.batch_size = args.batch_size
try:
if args.img_folder:
g_ema = None
latent_sampler = None
config.var.best_fid = -1
else:
"""
Build G & D
"""
g_ema = import_func(config.train_params.g_arch)(config=config)
latent_sampler = LatentSampler(g_ema, config)
"""
Multi-GPU
"""
if config.var.dataparallel:
device = "cpu" # torch will auto do the GPU partitioning in backend
g_ema = nn.DataParallel(g_ema).cuda()
else:
device = "cuda"
g_ema = g_ema.to(device)
"""
Load checkpoint
"""
if args.ckpt is None:
ckpt_dir = os.path.join(config.var.log_dir, config.var.exp_name, "ckpt")
best_ckpt = os.path.join(ckpt_dir, "best_fid.pth.tar")
assert os.path.exists(best_ckpt), "Cannot find checkpoint at {}!".format(best_ckpt)
print(" [*] Found ckpt, load model from:", best_ckpt)
ckpt = torch.load(best_ckpt, map_location=lambda storage, loc: storage)
else:
ckpt = torch.load(args.ckpt, map_location=lambda storage, loc: storage)
safe_load_state_dict(g_ema, ckpt["g_ema"]) #, strict=False)
print(" [*] Loaded ckpt at {} iter with FID {:.4f}".format(ckpt["iter"], ckpt["best_fid"]))
config.var.best_fid = ckpt["best_fid"]
"""
FID setup
"""
inception = load_patched_inception_v3()
inception.eval()
"""
Multi-GPU
"""
if config.var.dataparallel:
device = "cpu" # torch will auto do the GPU partitioning in backend
inception = nn.DataParallel(inception).cuda()
else:
device = "cuda"
inception = inception.to(device)
eval(args, latent_sampler, g_ema, inception, device, config)
except Exception as e:
if e is not KeyboardInterrupt:
error_dirs = sorted(glob("./burst-errors-*"))
error_f = os.path.join(config.var.log_dir, config.var.exp_name, "error-log.txt")
with open(error_f, "w") as f:
f.write(str(e) + "\n")
f.write(" *** stack trace *** \n")
f.write(traceback.format_exc())
raise e