forked from chang810249/BEGAN-CS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
209 lines (169 loc) · 7.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""
Most codes from https://github.com/carpedm20/DCGAN-tensorflow
"""
from __future__ import division
import math
import random
import pprint
import scipy.misc
import numpy as np
from time import gmtime, strftime
from six.moves import xrange
import matplotlib.pyplot as plt
import os, gzip
import skimage.io as io
from PIL import Image
import tensorflow as tf
import tensorflow.contrib.slim as slim
def read_and_decode(filename_queue, dataset, batch_size, target_height, target_width, channels):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'image_raw': tf.FixedLenFeature([], tf.string)
})
# Convert from a scalar string tensor (whose single string has
# length mnist.IMAGE_PIXELS) to a uint8 tensor with shape
# [mnist.IMAGE_PIXELS].
image = tf.decode_raw(features['image_raw'], tf.uint8)
height = tf.cast(features['height'], tf.int32)
width = tf.cast(features['width'], tf.int32)
image_shape = tf.stack([height, width, channels])
image = tf.reshape(image, image_shape)
#print(image.shape)
# Random transformations can be put here: right before you crop images
# to predefined size. To get more information look at the stackoverflow
# question linked above.
resized_image = tf.image.resize_image_with_crop_or_pad(image=image,
target_height=384,
target_width=384)
#print(resized_image.shape)
images = tf.train.shuffle_batch( [resized_image],
batch_size=batch_size,
capacity=30,
num_threads=2,
min_after_dequeue=10)
if dataset in ['CelebA']:
images = tf.image.crop_to_bounding_box(images, 50, 25, 128, 128)
images = tf.image.resize_nearest_neighbor(images, [target_height, target_width])
return images
def load_tfrecord(dataset_name, batch_size, target_height, target_width, channels):
filename_queue = tf.train.string_input_producer([dataset_name], num_epochs=10)
dataset = dataset_name.split('/')[-1].split('.')[-2]
images = read_and_decode(filename_queue, dataset, batch_size, target_height, target_width, channels)
return images
def load_mnist(dataset_name):
data_dir = os.path.join("./data", dataset_name)
def extract_data(filename, num_data, head_size, data_size):
with gzip.open(filename) as bytestream:
bytestream.read(head_size)
buf = bytestream.read(data_size * num_data)
data = np.frombuffer(buf, dtype=np.uint8).astype(np.float)
return data
data = extract_data(data_dir + '/train-images-idx3-ubyte.gz', 60000, 16, 28 * 28)
trX = data.reshape((60000, 28, 28, 1))
data = extract_data(data_dir + '/train-labels-idx1-ubyte.gz', 60000, 8, 1)
trY = data.reshape((60000))
data = extract_data(data_dir + '/t10k-images-idx3-ubyte.gz', 10000, 16, 28 * 28)
teX = data.reshape((10000, 28, 28, 1))
data = extract_data(data_dir + '/t10k-labels-idx1-ubyte.gz', 10000, 8, 1)
teY = data.reshape((10000))
trY = np.asarray(trY)
teY = np.asarray(teY)
X = np.concatenate((trX, teX), axis=0)
y = np.concatenate((trY, teY), axis=0).astype(np.int)
seed = 547
np.random.seed(seed)
np.random.shuffle(X)
np.random.seed(seed)
np.random.shuffle(y)
y_vec = np.zeros((len(y), 10), dtype=np.float)
for i, label in enumerate(y):
y_vec[i, y[i]] = 1.0
return X / 255., y_vec
def check_folder(log_dir):
if not os.path.exists(log_dir):
os.makedirs(log_dir)
return log_dir
def show_all_variables():
model_vars = tf.trainable_variables()
slim.model_analyzer.analyze_vars(model_vars, print_info=True)
def get_image(image_path, input_height, input_width, resize_height=64, resize_width=64, crop=True, grayscale=False):
image = imread(image_path, grayscale)
return transform(image, input_height, input_width, resize_height, resize_width, crop)
def get_celeba_image(image_path, input_height, input_width, resize_height=64, resize_width=64, crop=True, grayscale=False):
image = imread(image_path, grayscale)
image = image[50:128+50, 25:128+25, :]
return transform(image, input_height, input_width, resize_height, resize_width, crop)
def save_images(images, size, image_path):
return imsave(inverse_transform(images), size, image_path)
def imread(path, grayscale = False):
if (grayscale):
return scipy.misc.imread(path, flatten = True).astype(np.float)
else:
return scipy.misc.imread(path).astype(np.float)
def merge_images(images, size):
return inverse_transform(images)
def merge(images, size):
h, w = images.shape[1], images.shape[2]
if (images.shape[3] in (3,4)):
c = images.shape[3]
img = np.zeros((h * size[0], w * size[1], c))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j * h:j * h + h, i * w:i * w + w, :] = image
return img
elif images.shape[3]==1:
img = np.zeros((h * size[0], w * size[1]))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j * h:j * h + h, i * w:i * w + w] = image[:,:,0]
return img
else:
raise ValueError('in merge(images,size) images parameter ''must have dimensions: HxW or HxWx3 or HxWx4')
def imsave(images, size, path):
image = np.squeeze(merge(images, size))
return scipy.misc.imsave(path, image)
def center_crop(x, crop_h, crop_w, resize_h=64, resize_w=64):
if crop_w is None:
crop_w = crop_h
h, w = x.shape[:2]
j = int(round((h - crop_h)/2.))
i = int(round((w - crop_w)/2.))
return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w], [resize_h, resize_w])
def transform(image, input_height, input_width, resize_height=64, resize_width=64, crop=True):
if crop:
cropped_image = center_crop(image, input_height, input_width, resize_height, resize_width)
else:
cropped_image = scipy.misc.imresize(image, [resize_height, resize_width])
return np.array(cropped_image)/127.5 - 1.
def inverse_transform(images):
return (images+1.)/2.
""" Drawing Tools """
# borrowed from https://github.com/ykwon0407/variational_autoencoder/blob/master/variational_bayes.ipynb
def save_scattered_image(z, id, z_range_x, z_range_y, name='scattered_image.jpg'):
N = 10
plt.figure(figsize=(8, 6))
plt.scatter(z[:, 0], z[:, 1], c=np.argmax(id, 1), marker='o', edgecolor='none', cmap=discrete_cmap(N, 'jet'))
plt.colorbar(ticks=range(N))
axes = plt.gca()
axes.set_xlim([-z_range_x, z_range_x])
axes.set_ylim([-z_range_y, z_range_y])
plt.grid(True)
plt.savefig(name)
# borrowed from https://gist.github.com/jakevdp/91077b0cae40f8f8244a
def discrete_cmap(N, base_cmap=None):
"""Create an N-bin discrete colormap from the specified input map"""
# Note that if base_cmap is a string or None, you can simply do
# return plt.cm.get_cmap(base_cmap, N)
# The following works for string, None, or a colormap instance:
base = plt.cm.get_cmap(base_cmap)
color_list = base(np.linspace(0, 1, N))
cmap_name = base.name + str(N)
return base.from_list(cmap_name, color_list, N)