-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnoise.go
194 lines (158 loc) · 4.97 KB
/
noise.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Copyright © 2017 Henrique Taunay <[email protected]>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package noise
import "math"
type NoiseOptions struct {
Size uint
Octaves uint
Frequency float64
Lacunarity float64
Persistence float64
XOffset float64
YOffset float64
Channels uint
}
func Build(opts NoiseOptions) [][]uint8 {
// allocate space
matrix := make([][]uint8, opts.Size)
for i := 0; i < int(opts.Size); i++ {
matrix[i] = make([]uint8, opts.Size)
}
ch := make(chan bool, opts.Channels)
chunkSize := int(opts.Size / opts.Channels)
for i := 0; i < int(opts.Size); i += chunkSize {
go populate(matrix, i, opts, ch)
}
<-ch
return matrix
}
func populate(m [][]uint8, iStart int, opts NoiseOptions, ch chan bool) {
channelOffset := int(opts.Size / opts.Channels)
iEnd := min(iStart+channelOffset, int(opts.Size))
for i := iStart; i < iEnd; i++ {
y := float64(i)/float64(opts.Size) + opts.YOffset/opts.Frequency
for j := 0; j < int(opts.Size); j++ {
x := float64(j)/float64(opts.Size) + opts.XOffset/opts.Frequency
//sample := noise(x,y,opts.frequency) * 0.5 + 0.5
sample := sum(x, y, opts)*0.5 + 0.5
scale := uint8(sample * 255.0)
m[i][j] = scale
}
}
ch <- true
}
// Auxiliary vec2 type
type vec2 struct {
x, y float64
}
func (v vec2) normalized() vec2 {
h := math.Sqrt(v.x*v.x + v.y*v.y)
return vec2{x: v.x / h, y: v.y / h}
}
// Hash mask
const hm_size = 255
var hm = [...]uint8{
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225,
140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148,
247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32,
57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175,
74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,
60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54,
65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169,
200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64,
52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212,
207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213,
119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104,
218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241,
81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157,
184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93,
222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180,
}
// Adjacent gradients
const grad_size = 7
var grad = [...]vec2{
vec2{x: 1.0, y: 0.0},
vec2{x: -1.0, y: 0.0},
vec2{x: 0.0, y: 1.0},
vec2{x: 0.0, y: -1.0},
vec2{x: 1.0, y: 1.0}.normalized(),
vec2{x: -1.0, y: 1.0}.normalized(),
vec2{x: 1.0, y: -1.0}.normalized(),
vec2{x: -1.0, y: -1.0}.normalized(),
}
func noise(x, y, frequency float64) float64 {
fx := x * frequency
fy := y * frequency
ix0 := int(fx)
iy0 := int(fy)
tx0 := fx - float64(ix0)
ty0 := fy - float64(iy0)
tx1 := tx0 - 1.0
ty1 := ty0 - 1.0
ix0 &= hm_size
iy0 &= hm_size
ix1 := (ix0 + 1) & hm_size
iy1 := (iy0 + 1) & hm_size
h0 := int(hm[ix0])
h1 := int(hm[ix1])
hm00 := (h0 + iy0) & hm_size
hm10 := (h1 + iy0) & hm_size
hm01 := (h0 + iy1) & hm_size
hm11 := (h1 + iy1) & hm_size
g00 := grad[hm[hm00]&grad_size]
g10 := grad[hm[hm10]&grad_size]
g01 := grad[hm[hm01]&grad_size]
g11 := grad[hm[hm11]&grad_size]
v00 := dot(g00, vec2{x: tx0, y: ty0})
v10 := dot(g10, vec2{x: tx1, y: ty0})
v01 := dot(g01, vec2{x: tx0, y: ty1})
v11 := dot(g11, vec2{x: tx1, y: ty1})
tx := smooth(tx0)
ty := smooth(ty0)
l1 := lerp(v00, v10, tx)
l2 := lerp(v01, v11, tx)
noise := lerp(l1, l2, ty) * math.Sqrt(2.0)
return noise
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func smooth(t float64) float64 {
return t * t * t * (t*(t*6.0-15.0) + 10.0)
}
func lerp(min, max, pos float64) float64 {
diff := max - min
value := min + float64(diff)*pos
return value
}
func dot(v1, v2 vec2) float64 {
return v1.x*v2.x + v1.y*v2.y
}
func sum(x float64, y float64, opts NoiseOptions) float64 {
sum := noise(x, y, opts.Frequency)
localFrequency := opts.Frequency
amplitude := 1.0
breadth := 1.0
for i := 1; i < int(opts.Octaves); i++ {
localFrequency *= opts.Lacunarity
amplitude *= opts.Persistence
breadth += amplitude
sum += noise(x, y, localFrequency) * amplitude
}
return sum / breadth
}