-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
33 lines (29 loc) · 876 Bytes
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader, TensorDataset
import itertools
import torch.nn.functional as F
from tqdm import trange
class Feature_Encoder(nn.Module):
def __init__(self, input_dim:int, output_dim:int=20):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.net = nn.Sequential(
nn.Linear(input_dim, output_dim),
nn.ReLU(),
)
self.apply(init_weights)
def forward(self, x):
return self.net(x)
class Classifier(nn.Module):
def __init__(self, input_dim=20):
super().__init__()
self.net = nn.Sequential(
# nn.ReLU()
nn.Linear(2*input_dim, 1)
)
self.apply(init_weights)
def forward(self, x):
return self.net(x)