-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
64 lines (58 loc) · 2.46 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
import torch
from tqdm import tqdm
from torch.nn.init import xavier_normal_
class Data:
def __init__(self, data_dir="data/FB15k-237/", reverse=False):
"""
Data loading and preparing
Parameters
----------
train_data - data for training model
valid_data - data for model validation
test_data - data for testing model
data - train, valid and test data together
entities - list of entities in knowledge graph
train_relations - relations in train data
valid_relations - relations in validation data
test_relations - relations in test data
relations - all relations in knowledge graph
"""
self.train_data = self.load_data(data_dir, "train", reverse=reverse)
self.valid_data = self.load_data(data_dir, "valid", reverse=reverse)
self.test_data = self.load_data(data_dir, "test", reverse=reverse)
self.data = self.train_data + self.valid_data + self.test_data
self.entities = self.get_entities(self.data)
self.train_relations = self.get_relations(self.train_data)
self.valid_relations = self.get_relations(self.valid_data)
self.test_relations = self.get_relations(self.test_data)
self.relations = self.train_relations + [i for i in self.valid_relations \
if i not in self.train_relations] + [i for i in self.test_relations \
if i not in self.train_relations]
def load_data(self, data_dir, data_type="train", reverse=False):
"""
Loads dataset from the directory
Parameters
----------
data_dir - path to directory with dataset
data_type in [train, valid, test] - train or validation or test dataset
reverse - Add reverse edges in knowledge graph
"""
with open("%s%s.txt" % (data_dir, data_type), "r") as f:
data = f.read().strip().split("\n")
data = [i.split() for i in data]
if reverse:
data += [[i[2], i[1]+"_reverse", i[0]] for i in data]
return data
def get_relations(self, data):
"""
Returns list of relations in data
"""
relations = sorted(list(set([d[1] for d in data])))
return relations
def get_entities(self, data):
"""
Returns list of entities in data
"""
entities = sorted(list(set([d[0] for d in data]+[d[2] for d in data])))
return entities