forked from eparker12/nCoV_tracker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ny_data_us.R
62 lines (47 loc) · 2.85 KB
/
ny_data_us.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
## Covid-2019 interactive mapping tool: script to reformat New York Times US state-level data
## Edward Parker and Quentic Leclerc, London School of Hygiene & Tropical Medicine, April 2020
## data extracted from New York Times state-level data obtained from following Github repository
# https://github.com/nytimes/covid-19-data
## state-level population information obtained from US census data
# https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html#par_textimage_1574439295
# load libraries
if(!require(dplyr)) install.packages("dplyr", repos = "http://cran.us.r-project.org")
# load nyt case data
ny_cases <- as.data.frame(data.table::fread("https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv"))
state_pops <- read.csv("input_data/us_state_pop.csv")
ny_cases <- merge(ny_cases, state_pops, by="state")
# add data for new cases, new deaths, days since 100th case, and days since 10th death
ny_cases$new_deaths = ny_cases$new_cases = NA
ny_cases$days_since_case100 = ny_cases$days_since_death10 = 0
ny_cases = ny_cases[order(ny_cases$state, ny_cases$date),]
state_list = unique(ny_cases$state)
for (i in 1:length(state_list)) {
ny_subset = subset(ny_cases, state == state_list[i])
ny_subset = ny_subset[order(ny_subset$date),]
# add starting level for new cases and deaths
ny_subset$new_cases = ny_subset$cases[1]
ny_subset$new_deaths = ny_subset$deaths[1]
for (j in 2:nrow(ny_subset)) {
ny_subset$new_cases[j] = ny_subset$cases[j] - ny_subset$cases[j-1]
ny_subset$new_deaths[j] = ny_subset$deaths[j] - ny_subset$deaths[j-1]
}
# set negative new case or death counts to 0
ny_subset$new_cases[ny_subset$new_cases<0] = 0
ny_subset$new_deaths[ny_subset$new_deaths<0] = 0
# data on days since 100th case or 10th death
ny_subset$days_since_case100[ny_subset$cases>=100] = 0:(sum(ny_subset$cases>=100)-1)
ny_subset$days_since_death10[ny_subset$deaths>=10] = 0:(sum(ny_subset$deaths>=10)-1)
# fold into main dataset
ny_cases$new_cases[ny_cases$state==state_list[i]] = ny_subset$new_cases
ny_cases$new_deaths[ny_cases$state==state_list[i]] = ny_subset$new_deaths
ny_cases$days_since_case100[ny_cases$state==state_list[i]] = ny_subset$days_since_case100
ny_cases$days_since_death10[ny_cases$state==state_list[i]] = ny_subset$days_since_death10
}
# add normalised counts
ny_cases$per100k = as.numeric(format(round(ny_cases$cases/(ny_cases$population/100000),1),nsmall=1))
ny_cases$newper100k = as.numeric(format(round(ny_cases$new_cases/(ny_cases$population/100000),1),nsmall=1))
ny_cases$deathsper100k = as.numeric(format(round(ny_cases$deaths/(ny_cases$population/100000),1),nsmall=1))
ny_cases$newdeathsper100k = as.numeric(format(round(ny_cases$new_deaths/(ny_cases$population/100000),1),nsmall=1))
# save output
write.csv(ny_cases, "input_data/coronavirus_states.csv", row.names=F)
rm(list = ls())