Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Validation plots for modelVerify - PACT and poisson examples #5

Open
V-Rang opened this issue Mar 13, 2024 · 6 comments
Open

Validation plots for modelVerify - PACT and poisson examples #5

V-Rang opened this issue Mar 13, 2024 · 6 comments
Labels
Regression-Testing Report results at key stages of development

Comments

@V-Rang
Copy link
Collaborator

V-Rang commented Mar 13, 2024

git commit hash:
commit 13388d1

Following are the validation plots to check for correctness of modelVerify for the PACT and poisson examples. Plots are made for the following cases:

  1. misfit = True - a. 1 process, b. 4 process
  2. misfit = False - a. 1 process b. 4 process

qPACT Problem:

Number of processes = 1

Finite difference check with misfit only = True

image

Finite difference check with misfit only = False

image

output of iNCG

image

image of True parameter and estimated parameter

image
image

Number of processes = 4

Finite difference check with misfit only = True

image

Finite difference check with misfit only = False

image

output of iNCG

image

image of True parameter and estimated parameter

image
image

Poisson Example with Robin BC

Number of processes = 1

Finite difference check with misfit_only = True

image

Finite difference check with misifit_only = False

image

output of iNCG

image

image of True parameter and estimated parameter

image
image

Number of processes = 4

Finite difference check with misfit_only = True

image

Finite difference check with misfit_only = False

image

output of iNCG

image

image of True parameter and estimated parameter

image
image

@uvilla
Copy link
Member

uvilla commented Mar 13, 2024

Thank you @V-Rang .

All results look good. I recommend we merge this into main, so we have a working base to which build off the rest.

Let's keep this issue open for future updates.

@uvilla uvilla added the Regression-Testing Report results at key stages of development label Mar 13, 2024
@V-Rang
Copy link
Collaborator Author

V-Rang commented Mar 18, 2024

Changes made from previous results:
commit: 1c390ab

for the qpact example,
prior_param = {"gamma": 0.1, "delta": 2.}
instead of
prior_param = {"gamma": 0.05, "delta": 1.}

Following are the validation plots to check for correctness of modelVerify for the PACT and poisson examples. Plots are made for the following cases:

  1. misfit = True - a. 1 process, b. 4 process
  2. misfit = False - a. 1 process b. 4 process

qPACT Problem:

Number of processes = 1

Finite difference check with misfit only = True

image

Finite difference check with misfit only = False

image

output of iNCG

It  cg_it cost            misfit          reg             (g,dm)          ||g||L2        alpha          tolcg         
  1   1    3.296872e+04    3.251677e+04    4.519588e+02   -3.875949e+06   4.771534e+05   1.000000e+00   5.000000e-01
  2   7    3.155966e+04    3.120122e+04    3.584371e+02   -7.643731e+04   6.649927e+03   3.125000e-02   1.180537e-01
  3   3    2.796710e+04    2.739224e+04    5.748642e+02   -4.152889e+04   5.522025e+03   2.500000e-01   1.075772e-01
  4  14    2.705065e+04    2.658544e+04    4.652047e+02   -6.089124e+04   4.465198e+03   3.125000e-02   9.673672e-02
  5   4    2.533982e+04    2.465626e+04    6.835588e+02   -9.036735e+03   3.611779e+03   5.000000e-01   8.700247e-02
  6   9    2.482851e+04    2.427916e+04    5.493458e+02   -4.471282e+04   3.667286e+03   6.250000e-02   8.766847e-02
  7  15    2.437344e+04    2.374975e+04    6.236877e+02   -4.171283e+04   2.838350e+03   3.125000e-02   7.712656e-02
  8   9    2.406868e+04    2.349112e+04    5.775573e+02   -6.462086e+03   2.730377e+03   1.250000e-01   7.564536e-02
  9  17    2.377087e+04    2.312096e+04    6.499099e+02   -2.818587e+04   2.560199e+03   3.125000e-02   7.325004e-02
 10  10    2.359262e+04    2.298338e+04    6.092321e+02   -5.662241e+03   2.567324e+03   1.250000e-01   7.335189e-02
 11  17    2.329728e+04    2.261019e+04    6.870887e+02   -3.022134e+04   2.423973e+03   3.125000e-02   7.127461e-02
 12  10    2.310403e+04    2.244562e+04    6.584048e+02   -5.547740e+03   2.434305e+03   6.250000e-02   7.142636e-02
 13  10    2.295427e+04    2.224256e+04    7.117065e+02   -6.386892e+03   2.298275e+03   6.250000e-02   6.940200e-02
 14  10    2.278479e+04    2.210582e+04    6.789732e+02   -6.207825e+03   2.378126e+03   6.250000e-02   7.059735e-02
 15  10    2.265726e+04    2.192372e+04    7.335456e+02   -6.142784e+03   2.219152e+03   6.250000e-02   6.819688e-02
 16  17    2.259393e+04    2.191548e+04    6.784472e+02   -6.743317e+03   2.304022e+03   6.250000e-02   6.948873e-02
 17  17    2.242684e+04    2.169240e+04    7.344484e+02   -1.390302e+04   2.178747e+03   3.125000e-02   6.757318e-02
 18   9    2.222491e+04    2.151035e+04    7.145604e+02   -3.331881e+03   2.198679e+03   1.250000e-01   6.788157e-02
 19  17    2.207479e+04    2.131190e+04    7.628902e+02   -1.112544e+04   2.079360e+03   3.125000e-02   6.601396e-02
 20  10    2.188162e+04    2.113709e+04    7.445320e+02   -2.818787e+03   2.094892e+03   1.250000e-01   6.626005e-02
 21   5    9.019375e+03    4.307817e+03    4.711558e+03   -2.093940e+05   1.996465e+03   2.500000e-01   6.468474e-02
 22   9    7.149101e+03    3.617456e+03    3.531645e+03   -5.194625e+04   1.014948e+03   6.250000e-02   4.612038e-02
 23  16    5.383839e+03    2.844694e+03    2.539145e+03   -2.187967e+04   2.107345e+03   1.250000e-01   6.645671e-02
 24   8    5.108703e+03    2.923998e+03    2.184705e+03   -7.448186e+03   1.791338e+03   2.500000e-01   6.127168e-02
 25   3    4.051294e+03    1.909001e+03    2.142293e+03   -6.214051e+03   3.484868e+03   1.000000e+00   8.546026e-02
 26   8    3.869729e+03    1.668682e+03    2.201047e+03   -1.343944e+05   1.619995e+03   7.812500e-03   5.826770e-02
 27   5    3.514139e+03    1.533697e+03    1.980442e+03   -3.379007e+03   1.285266e+03   2.500000e-01   5.190002e-02
 28   6    3.010683e+03    1.146314e+03    1.864369e+03   -3.052453e+03   1.871195e+03   2.500000e-01   6.262252e-02
 29  17    2.954831e+03    1.115276e+03    1.839555e+03   -4.819727e+03   1.498399e+03   1.562500e-02   5.603828e-02
 30  10    2.702201e+03    7.525594e+02    1.949642e+03   -1.091674e+03   1.409943e+03   1.000000e+00   5.435903e-02
 31  12    2.541893e+03    6.355619e+02    1.906331e+03   -1.034107e+03   6.321756e+02   2.500000e-01   3.639903e-02
 32  18    2.480316e+03    5.359777e+02    1.944338e+03   -8.076250e+02   5.560421e+02   1.250000e-01   3.413696e-02
 33  11    2.371346e+03    5.316886e+02    1.839657e+03   -2.282551e+02   4.535901e+02   1.000000e+00   3.083208e-02
 34  11    2.355402e+03    5.071336e+02    1.848268e+03   -2.860981e+01   1.197617e+02   1.000000e+00   1.584273e-02
 35  13    2.354440e+03    5.038637e+02    1.850576e+03   -1.794025e+00   2.140523e+01   1.000000e+00   6.697781e-03
 36  17    2.354424e+03    5.035916e+02    1.850833e+03   -2.974569e-02   2.456828e+00   1.000000e+00   2.269125e-03

Converged in  36  iterations.
Termination reason:  Norm of the gradient less than tolerance
Final gradient norm:  0.0621147028625235
Final cost:  2354.424493453355

image of True parameter and estimated parameter

image
image

Number of processes = 4

Finite difference check with misfit only = True

image

Finite difference check with misfit only = False

image

output of iNCG

It  cg_it cost            misfit          reg             (g,dm)          ||g||L2        alpha          tolcg         
  1   1    3.296995e+04    3.251802e+04    4.519356e+02   -3.875723e+06   4.771542e+05   1.000000e+00   5.000000e-01
  2   7    3.155839e+04    3.120018e+04    3.582100e+02   -7.666751e+04   6.652223e+03   3.125000e-02   1.180739e-01
  3   3    2.796499e+04    2.739045e+04    5.745348e+02   -4.153938e+04   5.523031e+03   2.500000e-01   1.075869e-01
  4  14    2.704973e+04    2.658494e+04    4.647847e+02   -6.097241e+04   4.463572e+03   3.125000e-02   9.671902e-02
  5   4    2.534852e+04    2.466459e+04    6.839218e+02   -9.050234e+03   3.610608e+03   5.000000e-01   8.698829e-02
  6  16    2.449498e+04    2.390083e+04    5.941553e+02   -4.713491e+04   3.671804e+03   3.125000e-02   8.772238e-02
  7  15    2.404579e+04    2.337810e+04    6.676862e+02   -9.051502e+03   2.979350e+03   1.250000e-01   7.901898e-02
  8  18    2.394606e+04    2.337364e+04    5.724192e+02   -1.335636e+04   2.705607e+03   6.250000e-02   7.530139e-02
  9  17    2.366337e+04    2.301783e+04    6.455430e+02   -2.786584e+04   2.546911e+03   3.125000e-02   7.305963e-02
 10   9    2.347865e+04    2.287297e+04    6.056806e+02   -5.722882e+03   2.563201e+03   1.250000e-01   7.329291e-02
 11  17    2.318685e+04    2.250752e+04    6.793257e+02   -2.817525e+04   2.422086e+03   3.125000e-02   7.124680e-02
 12  10    2.312548e+04    2.249397e+04    6.315054e+02   -5.363226e+03   2.428239e+03   1.250000e-01   7.133725e-02
 13  17    2.280759e+04    2.208737e+04    7.202176e+02   -3.732720e+04   2.331012e+03   3.125000e-02   6.989449e-02
 14  16    2.269148e+04    2.202200e+04    6.694851e+02   -6.422924e+03   2.330858e+03   6.250000e-02   6.989218e-02
 15  16    2.268491e+04    2.191173e+04    7.731819e+02   -1.150701e+04   2.205185e+03   6.250000e-02   6.798188e-02
 16  18    2.243215e+04    2.171989e+04    7.122566e+02   -1.502461e+04   2.374696e+03   3.125000e-02   7.054637e-02
 17   4    2.137470e+04    2.047716e+04    8.975439e+02   -2.657031e+03   2.176034e+03   1.000000e+00   6.753105e-02
 18  21    2.103745e+04    2.022861e+04    8.088414e+02   -1.943974e+04   2.456300e+03   6.250000e-02   7.174825e-02
 19  19    2.078813e+04    1.991482e+04    8.733038e+02   -2.105607e+04   2.054072e+03   3.125000e-02   6.561127e-02
 20  18    2.076780e+04    1.995535e+04    8.124550e+02   -2.829645e+03   1.914904e+03   1.250000e-01   6.334964e-02
 21   5    8.349851e+03    4.072309e+03    4.277541e+03   -7.252027e+05   1.847368e+03   6.250000e-02   6.222248e-02
 22   9    7.392673e+03    4.257577e+03    3.135096e+03   -1.089879e+05   9.980348e+02   3.125000e-02   4.573445e-02
 23   8    6.361708e+03    3.212121e+03    3.149587e+03   -1.137715e+04   3.108112e+03   1.000000e+00   8.070844e-02
 24  10    5.999214e+03    4.325820e+03    1.673394e+03   -1.006587e+04   2.486881e+03   5.000000e-01   7.219351e-02
 25   6    4.322378e+03    2.451385e+03    1.870993e+03   -1.820136e+04   2.047321e+03   2.500000e-01   6.550336e-02
 26   7    3.408702e+03    1.489883e+03    1.918819e+03   -3.371630e+04   2.067273e+03   6.250000e-02   6.582178e-02
 27   8    2.904210e+03    1.102836e+03    1.801374e+03   -3.019679e+03   1.741981e+03   2.500000e-01   6.042162e-02
 28  10    2.473420e+03    6.410852e+02    1.832335e+03   -8.240099e+02   1.361728e+03   1.000000e+00   5.342148e-02
 29   8    2.372635e+03    5.314257e+02    1.841209e+03   -1.729121e+02   5.267813e+02   1.000000e+00   3.322659e-02
 30  10    2.355748e+03    5.082983e+02    1.847450e+03   -2.868934e+01   1.695337e+02   1.000000e+00   1.884945e-02
 31  12    2.353178e+03    5.043131e+02    1.848864e+03   -4.471165e+00   4.875016e+01   1.000000e+00   1.010785e-02
 32  14    2.352970e+03    5.036071e+02    1.849363e+03   -3.869172e-01   1.106428e+01   1.000000e+00   4.815398e-03
 33  18    2.352967e+03    5.035482e+02    1.849419e+03   -5.827122e-03   1.169999e+00   1.000000e+00   1.565898e-03

Converged in  33  iterations.
Termination reason:  Norm of the gradient less than tolerance
Final gradient norm:  0.019329861759867107
Final cost:  2352.967129738087

image of True parameter and estimated parameter

image
image

Poisson Example with Robin BC

Number of processes = 1

Finite difference check with misfit_only = True

image

Finite difference check with misifit_only = False

image

output of iNCG

It  cg_it cost            misfit          reg             (g,dm)          ||g||L2        alpha          tolcg         
  1   1    1.510023e+00    1.163090e+00    3.469327e-01   -1.233778e+01   1.720213e+01   1.000000e+00   5.000000e-01
  2   1    1.318297e+00    6.116926e-01    7.066045e-01   -5.274990e-01   1.701795e+00   1.000000e+00   3.145303e-01
  3   1    1.312508e+00    7.090180e-01    6.034896e-01   -2.078706e-02   2.782278e-01   1.000000e+00   1.271772e-01
  4   1    1.311205e+00    6.644890e-01    6.467155e-01   -4.281429e-03   1.235148e-01   1.000000e+00   8.473608e-02
  5   1    1.311015e+00    6.816581e-01    6.293570e-01   -6.445201e-04   5.437428e-02   1.000000e+00   5.622191e-02
  6   2    1.310981e+00    6.744765e-01    6.365042e-01   -1.141230e-04   2.004328e-02   1.000000e+00   3.413448e-02
  7   1    1.310975e+00    6.773678e-01    6.336075e-01   -1.820925e-05   8.418872e-03   1.000000e+00   2.212258e-02
  8   1    1.310974e+00    6.761869e-01    6.347875e-01   -3.036375e-06   3.218755e-03   1.000000e+00   1.367895e-02
  9   2    1.310974e+00    6.766668e-01    6.343075e-01   -5.024350e-07   1.468645e-03   1.000000e+00   9.239900e-03
 10   2    1.310974e+00    6.764714e-01    6.345029e-01   -8.313884e-08   5.584325e-04   1.000000e+00   5.697630e-03
 11   2    1.310974e+00    6.765509e-01    6.344234e-01   -1.375349e-08   2.280737e-04   1.000000e+00   3.641216e-03
 12   2    1.310974e+00    6.765185e-01    6.344557e-01   -2.276719e-09   9.281822e-05   1.000000e+00   2.322873e-03
 13   2    1.310974e+00    6.765317e-01    6.344426e-01   -3.767860e-10   3.775877e-05   1.000000e+00   1.481555e-03

Converged in  13  iterations.
Termination reason:  Norm of the gradient less than tolerance
Final gradient norm:  1.536157472308261e-05
Final cost:  1.3109742417005774

image of True parameter and estimated parameter

image
image

Number of processes = 4

Finite difference check with misfit_only = True

image

Finite difference check with misfit_only = False

image

output of iNCG

It  cg_it cost            misfit          reg             (g,dm)          ||g||L2        alpha          tolcg         
  1   1    1.496400e+00    1.151556e+00    3.448446e-01   -1.226354e+01   1.714864e+01   1.000000e+00   5.000000e-01
  2   1    1.305693e+00    6.045611e-01    7.011318e-01   -5.232803e-01   1.697806e+00   1.000000e+00   3.146510e-01
  3   1    1.300027e+00    6.999198e-01    6.001076e-01   -2.019908e-02   2.753946e-01   1.000000e+00   1.267252e-01
  4   1    1.298778e+00    6.566579e-01    6.421199e-01   -4.086709e-03   1.208338e-01   1.000000e+00   8.394203e-02
  5   1    1.298599e+00    6.732131e-01    6.253857e-01   -6.060228e-04   5.325166e-02   1.000000e+00   5.572521e-02
  6   2    1.298567e+00    6.663489e-01    6.322178e-01   -1.054426e-04   1.944718e-02   1.000000e+00   3.367546e-02
  7   1    1.298562e+00    6.690905e-01    6.294713e-01   -1.655956e-05   8.037392e-03   1.000000e+00   2.164924e-02
  8   1    1.298561e+00    6.679800e-01    6.305810e-01   -2.715871e-06   3.050890e-03   1.000000e+00   1.333824e-02
  9   2    1.298561e+00    6.684276e-01    6.301332e-01   -4.420894e-07   1.378110e-03   1.000000e+00   8.964523e-03
 10   2    1.298561e+00    6.682468e-01    6.303140e-01   -7.198797e-08   5.209175e-04   1.000000e+00   5.511498e-03
 11   2    1.298561e+00    6.683198e-01    6.302411e-01   -1.171807e-08   2.109703e-04   1.000000e+00   3.507485e-03
 12   2    1.298561e+00    6.682903e-01    6.302705e-01   -1.908626e-09   8.517799e-05   1.000000e+00   2.228686e-03
 13   2    1.298561e+00    6.683022e-01    6.302586e-01   -3.108011e-10   3.437194e-05   1.000000e+00   1.415752e-03

Converged in  13  iterations.
Termination reason:  Norm of the gradient less than tolerance
Final gradient norm:  1.3871005909740155e-05
Final cost:  1.298560860719057

image of True parameter and estimated parameter

image
image

@V-Rang
Copy link
Collaborator Author

V-Rang commented Mar 19, 2024

commit: 411197e
Following are results for the dirichlet B.C. poisson example: poisson_dirichlet_example.py:

  1. misfit = True - a. 1 process, b. 4 process
  2. misfit = False - a. 1 process b. 4 process

Poisson Example with Dirichlet B.C.

Number of processes = 1

Finite difference check with misfit only = True

image

Finite difference check with misfit only = False

image

output of iNCG

It  cg_it cost            misfit          reg             (g,dm)          ||g||L2        alpha          tolcg         
  1   1    2.210116e-01    2.209794e-01    3.220179e-05   -5.705780e-02   1.073671e+01   1.000000e+00   5.000000e-01
  2   2    2.195079e-01    2.194459e-01    6.198675e-05   -3.006081e-03   2.285346e+00   1.000000e+00   4.613605e-01
  3   4    2.183350e-01    2.179219e-01    4.131137e-04   -2.346012e-03   1.843750e+00   1.000000e+00   4.143959e-01
  4   6    2.181011e-01    2.173819e-01    7.192358e-04   -4.675449e-04   9.063891e-01   1.000000e+00   2.905506e-01
  5   7    2.180940e-01    2.173489e-01    7.451106e-04   -1.413515e-05   2.297253e-01   1.000000e+00   1.462746e-01
  6   9    2.180940e-01    2.173429e-01    7.510416e-04   -1.235915e-07   2.219220e-02   1.000000e+00   4.546368e-02
  7  11    2.180940e-01    2.173430e-01    7.510033e-04   -8.725152e-11   5.367020e-04   1.000000e+00   7.070189e-03

Converged in  7  iterations.
Termination reason:  Norm of the gradient less than tolerance
Final gradient norm:  2.0616229359872946e-06
Final cost:  0.2180939716312415

image of True parameter and estimated parameter

image
image

plot of solveAdj

image

Number of processes = 4

Finite difference check with misfit only = True

image

Finite difference check with misfit only = False

image

output of iNCG

It  cg_it cost            misfit          reg             (g,dm)          ||g||L2        alpha          tolcg         
  1   1    2.159406e-01    2.159049e-01    3.565489e-05   -6.331131e-02   1.145710e+01   1.000000e+00   5.000000e-01
  2   2    2.152079e-01    2.151567e-01    5.114422e-05   -1.465300e-03   1.907459e+00   1.000000e+00   4.080283e-01
  3   3    2.148228e-01    2.147183e-01    1.044897e-04   -7.703075e-04   1.635545e+00   1.000000e+00   3.778278e-01
  4   6    2.145433e-01    2.141501e-01    3.931678e-04   -5.590322e-04   1.315141e+00   1.000000e+00   3.388042e-01
  5   7    2.145405e-01    2.141397e-01    4.008192e-04   -5.613884e-06   1.351815e-01   1.000000e+00   1.086229e-01
  6  10    2.145405e-01    2.141378e-01    4.026468e-04   -3.617218e-08   1.416015e-02   1.000000e+00   3.515577e-02
  7  11    2.145405e-01    2.141378e-01    4.026401e-04   -6.779171e-12   1.085220e-04   1.000000e+00   3.077666e-03

Converged in  7  iterations.
Termination reason:  Norm of the gradient less than tolerance
Final gradient norm:  5.145244891225999e-07
Final cost:  0.21454045138824673

image of True parameter and estimated parameter

image
image

plot of solveAdj

image

@uvilla
Copy link
Member

uvilla commented Mar 19, 2024

Something regarding the true parameter seems wrong in the Poisson Dirichlet BC example

@V-Rang
Copy link
Collaborator Author

V-Rang commented Mar 20, 2024

commit: 231c299
The previous post has results using m_true interpolated to be 0 over the mesh. The example has been revised using:
m_true.interpolate(lambda x: np.log(2 + 7*( ( (x[0] - 0.5)**2 + (x[1] - 0.5)**2)**0.5 > 0.2)) )
Following are revised results for the dirichlet B.C. poisson example: poisson_dirichlet_example.py:

  1. misfit = True - a. 1 process, b. 4 process
  2. misfit = False - a. 1 process b. 4 process

Poisson Example with Dirichlet B.C.

Number of processes = 1

Finite difference check with misfit only = True

image

Finite difference check with misfit only = False

image

output of iNCG

It  cg_it cost            misfit          reg             (g,dm)          ||g||L2        alpha          tolcg         
  1   1    2.081549e+01    2.076407e+01    5.142130e-02   -2.327885e+01   2.314143e+02   1.000000e+00   5.000000e-01
  2   2    4.767247e+00    4.106350e+00    6.608970e-01   -3.133430e+01   1.705423e+02   1.000000e+00   5.000000e-01
  3   4    3.137648e+00    1.722906e+00    1.414742e+00   -3.311442e+00   4.131988e+01   1.000000e+00   4.225562e-01
  4   5    3.037861e+00    1.554498e+00    1.483363e+00   -2.005600e-01   9.735901e+00   1.000000e+00   2.051129e-01
  5   7    3.035789e+00    1.524561e+00    1.511228e+00   -4.158589e-03   1.640894e+00   1.000000e+00   8.420641e-02
  6   9    3.035782e+00    1.525645e+00    1.510137e+00   -1.407674e-05   6.706989e-02   1.000000e+00   1.702428e-02
  7  10    3.035782e+00    1.525544e+00    1.510238e+00   -8.118817e-08   5.597232e-03   1.000000e+00   4.918035e-03
  8  11    3.035782e+00    1.525550e+00    1.510232e+00   -9.319779e-10   4.104822e-04   1.000000e+00   1.331840e-03

Converged in  8  iterations.
Termination reason:  Norm of the gradient less than tolerance
Final gradient norm:  5.321298717835267e-05
Final cost:  3.0357821176877158

image of True parameter and estimated parameter

image
image

plot of solveAdj

image

Number of processes = 4

Finite difference check with misfit only = True

image

Finite difference check with misfit only = False

image

output of iNCG

It  cg_it cost            misfit          reg             (g,dm)          ||g||L2        alpha          tolcg         
  1   1    2.070520e+01    2.065391e+01    5.129169e-02   -2.327944e+01   2.311846e+02   1.000000e+00   5.000000e-01
  2   2    4.756430e+00    4.099402e+00    6.570276e-01   -3.114331e+01   1.700321e+02   1.000000e+00   5.000000e-01
  3   4    3.131445e+00    1.719935e+00    1.411510e+00   -3.301555e+00   4.112825e+01   1.000000e+00   4.217846e-01
  4   5    3.034989e+00    1.558796e+00    1.476192e+00   -1.939070e-01   9.608657e+00   1.000000e+00   2.038693e-01
  5   7    3.032952e+00    1.528925e+00    1.504027e+00   -4.085692e-03   1.625483e+00   1.000000e+00   8.385168e-02
  6   9    3.032945e+00    1.530024e+00    1.502921e+00   -1.371305e-05   6.613065e-02   1.000000e+00   1.691305e-02
  7  10    3.032945e+00    1.529923e+00    1.503022e+00   -8.208561e-08   5.547424e-03   1.000000e+00   4.898535e-03
  8  11    3.032945e+00    1.529929e+00    1.503016e+00   -9.622087e-10   4.211070e-04   1.000000e+00   1.349637e-03

Converged in  8  iterations.
Termination reason:  Norm of the gradient less than tolerance
Final gradient norm:  5.4210885660070596e-05
Final cost:  3.032944864602089

image of True parameter and estimated parameter

image
image

plot of solveAdj

image

@V-Rang
Copy link
Collaborator Author

V-Rang commented Mar 21, 2024

commit: 6b24e13

Results for Poisson example on a square mesh with Dirichlet BC on top (u=1) and bottom (u=0) and Neumann BC on sides:

  1. misfit = True - a. 1 process, b. 4 process
  2. misfit = False - a. 1 process b. 4 process

Poisson Example with Dirichlet B.C.

Number of processes = 1

Finite difference check with misfit only = True

image

Finite difference check with misfit only = False

image

output of iNCG

It  cg_it cost            misfit          reg             (g,dm)          ||g||L2        alpha          tolcg         
  1   1    2.106268e+00    1.774915e+00    3.313531e-01   -7.333175e+00   4.629337e+01   1.000000e+00   5.000000e-01
  2   3    1.658591e+00    9.928253e-01    6.657658e-01   -9.008020e-01   1.279815e+01   1.000000e+00   5.000000e-01
  3   4    1.652912e+00    9.776138e-01    6.752985e-01   -1.134766e-02   2.052329e+00   1.000000e+00   2.105543e-01
  4   5    1.652713e+00    9.701717e-01    6.825415e-01   -3.981446e-04   3.109226e-01   1.000000e+00   8.195335e-02
  5   6    1.652710e+00    9.707168e-01    6.819936e-01   -5.754615e-06   3.561622e-02   1.000000e+00   2.773732e-02
  6   7    1.652710e+00    9.706608e-01    6.820496e-01   -1.679530e-08   1.772936e-03   1.000000e+00   6.188525e-03
  7   9    1.652710e+00    9.706618e-01    6.820486e-01   -6.459187e-11   7.606230e-05   1.000000e+00   1.281815e-03

Converged in  7  iterations.
Termination reason:  Norm of the gradient less than tolerance
Final gradient norm:  9.043502590837493e-06
Final cost:  1.6527103859730952

image of True parameter and estimated parameter

image
image

plot of solveAdj

image

Number of processes = 4

Finite difference check with misfit only = True

image

Finite difference check with misfit only = False

image

output of iNCG

It  cg_it cost            misfit          reg             (g,dm)          ||g||L2        alpha          tolcg         
  1   1    2.106574e+00    1.782573e+00    3.240008e-01   -7.193400e+00   4.593610e+01   1.000000e+00   5.000000e-01
  2   2    1.647535e+00    9.850315e-01    6.625039e-01   -9.233121e-01   1.341018e+01   1.000000e+00   5.000000e-01
  3   5    1.641720e+00    9.692772e-01    6.724427e-01   -1.163518e-02   2.058922e+00   1.000000e+00   2.117107e-01
  4   6    1.641679e+00    9.646987e-01    6.769799e-01   -8.053698e-05   1.426598e-01   1.000000e+00   5.572805e-02
  5   6    1.641678e+00    9.646532e-01    6.770252e-01   -2.096055e-07   6.521994e-03   1.000000e+00   1.191552e-02
  6   7    1.641678e+00    9.646461e-01    6.770324e-01   -3.100893e-10   2.836787e-04   1.000000e+00   2.485057e-03

Converged in  6  iterations.
Termination reason:  Norm of the gradient less than tolerance
Final gradient norm:  1.236504498323809e-05
Final cost:  1.6416784640711513

image of True parameter and estimated parameter

image
image

plot of solveAdj

image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Regression-Testing Report results at key stages of development
Projects
None yet
Development

No branches or pull requests

2 participants