-
Notifications
You must be signed in to change notification settings - Fork 1
Description
Attaching plots for samples taken from prior and posterior for two examples - example/poisson_dirichlet_example.py and example/sfsi_toy_gaussian.py
commit: 6a30e9d
Poisson Dirichlet example:
The base case is
noise_variance = 1e-4
prior_param = {"gamma": 0.03, "delta": 0.3}
Scaling factor, s is varied as 2,4,6,78,10 where modifications are made as:
noise_variance = (1/s^2) *base noise_variance
gamma = s * base gamma
delta = s * base delta
3 samples are generated for each value of scaling factor.
true parameter:

s = 2
posterior samples
s = 4
posterior samples
s = 6
posterior samples
s = 8
posterior samples
s = 10
posterior samples
qpact example:
The base case is
noise_variance = 1e-6
prior_param = {"gamma": 0.04, "delta": 0.8}
Scaling factor, s is varied as 2,4,6,78,10 where modifications are made as:
noise_variance = (1/s^2) *base noise_variance
gamma = s * base gamma
delta = s * base delta
3 samples are generated for each value of scaling factor.
true parameter:
