-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaws_costs.py
executable file
·444 lines (382 loc) · 12.9 KB
/
aws_costs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import csv
from datetime import datetime, timedelta
from io import StringIO
import boto3
DEFAULT_COST_TYPE = "UnblendedCost"
DEFAULT_GRANULARITY = "MONTHLY"
# Previously we excluded these types by default. Now we just include Usage instead.
DEFAULT_EXCLUDE_RECORD_TYPES = [
# "Credit",
# "Refund",
# "Tax",
# # These two aren't documented on
# # https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/manage-cost-categories.html#cost-categories-terms
# # but were confirmed in AWS Support ticket 171570162800825
# "Enterprise Discount Program Discount",
# "Solution Provider Program Discount",
]
# https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/manage-cost-categories.html#cost-categories-terms
DEFAULT_INCLUDE_RECORD_TYPES = ["Usage"]
EXPECTED_UNIT = "USD"
def _get_group_by(ce, time_period, dimension):
"""
Get the group by query for the given dimension
:return (group by query, all values for the dimension, optional mapping of values to display names)
"""
value_map = {}
if dimension[-1] == "$":
dim = dimension[:-1]
group_by = {"Type": "TAG", "Key": dim}
r = ce.get_tags(TimePeriod=time_period, TagKey=dim)
all_values = set(f"{dim}${t}" for t in r["Tags"])
return group_by, all_values, value_map
dim = dimension.upper()
if dim in ("ACCOUNT", "ACCOUNTNAME"):
group_by = {"Type": "DIMENSION", "Key": "LINKED_ACCOUNT"}
r = ce.get_dimension_values(TimePeriod=time_period, Dimension="LINKED_ACCOUNT")
all_values = set(dv["Value"] for dv in r["DimensionValues"])
if dim == "ACCOUNTNAME":
value_map = dict(
(dv["Value"], dv["Attributes"]["description"])
for dv in r["DimensionValues"]
)
return group_by, all_values, value_map
if dim == "SERVICE":
group_by = {"Type": "DIMENSION", "Key": dim}
r = ce.get_dimension_values(TimePeriod=time_period, Dimension=dim)
all_values = set(dv["Value"] for dv in r["DimensionValues"])
return group_by, all_values, value_map
raise ValueError(f"Invalid dimension: {dimension}")
def _get_filter(regions, exclude_types, include_types):
filter_count = 0
region_filter = None
exclude_filter = None
include_filter = None
filter = None
if regions:
filter_count += 1
region_filter = dict(
Dimensions={
"Key": "REGION",
"Values": regions,
}
)
if exclude_types:
filter_count += 1
exclude_filter = dict(
Not=dict(
Dimensions={
"Key": "RECORD_TYPE",
"Values": exclude_types,
}
)
)
if include_types:
filter_count += 1
include_filter = dict(
Dimensions={
"Key": "RECORD_TYPE",
"Values": include_types,
}
)
if filter_count > 1:
filter = dict(And=[])
for f in [region_filter, exclude_filter, include_filter]:
if f:
if filter:
filter["And"].append(f)
else:
filter = f
return filter
def costs_for_regions(
*,
time_period,
granularity,
regions,
session,
group1,
group2,
exclude_types,
include_types,
):
if session:
ce = session.client("ce")
else:
ce = boto3.client("ce")
group_by1, all_values1, value_map1 = _get_group_by(ce, time_period, group1)
group_by2, all_values2, value_map2 = _get_group_by(ce, time_period, group2)
r = None
results = []
kwargs = dict(
Granularity=granularity,
GroupBy=[group_by1, group_by2],
Metrics=["UnblendedCost"],
TimePeriod=time_period,
)
filter = _get_filter(regions, exclude_types, include_types)
if filter:
kwargs["Filter"] = filter
while not r or "NextPageToken" in r:
# print(f"get_cost_and_usage({kwargs})")
r = ce.get_cost_and_usage(**kwargs)
results.extend(r["ResultsByTime"])
return results, all_values1, all_values2, value_map1, value_map2
def costs_to_table(*, results, group1, all_values1, all_values2, cost_type):
# results will have one group per day/month
all_values2_sorted = sorted(all_values2)
header = [group1] + all_values2_sorted + ["TOTAL"]
costs = [[0] * len(header) for _ in range(len(all_values1))]
for result in results:
g1_g2_map = {}
for g in result["Groups"]:
# [group1, group2]
if g["Metrics"][cost_type]["Unit"] != EXPECTED_UNIT:
raise RuntimeError(
f"Unexpected unit: {g['Metrics'][cost_type]['Unit']}"
)
g1_g2_map[tuple(g["Keys"])] = g["Metrics"][cost_type]["Amount"]
for g1_i, g1 in enumerate(sorted(all_values1)):
if costs[g1_i][0]:
if costs[g1_i][0] != g1:
raise Exception(f"Error: {costs[g1_i][0]} != {g1}")
else:
costs[g1_i][0] = g1
for g2_i, g2 in enumerate(all_values2_sorted):
try:
c = float(g1_g2_map[(g1, g2)])
costs[g1_i][g2_i + 1] += c
costs[g1_i][-1] += c
except KeyError:
pass
return header, costs
def costs_to_flat(*, results, group1, group2, cost_type):
# Unpivoted/flat table with columns, no aggregation is done
header = ["START", "END", group1, group2, "COST"]
flat_costs = []
for result in results:
for g in result["Groups"]:
if g["Metrics"][cost_type]["Unit"] != EXPECTED_UNIT:
raise RuntimeError(
f"Unexpected unit: {g['Metrics'][cost_type]['Unit']}"
)
g1, g2 = g["Keys"]
start = result["TimePeriod"]["Start"]
end = result["TimePeriod"]["End"]
cost = float(g["Metrics"][cost_type]["Amount"])
flat_costs.append((start, end, g1, g2, cost))
return header, flat_costs
def _assert_header(header):
if header[-1] != "TOTAL":
raise RuntimeError(f"Unexpected header: {header}")
def format_message_summarise(header, group1, costs):
_assert_header(header)
costs_dsc = sorted(costs, key=lambda r: r[-1], reverse=True)
sum_total = 0
md_rows = ""
for row in costs_dsc:
sum_total += row[-1]
md_rows += f"|{row[0]}|{row[-1]:.2f}|\n"
msg = (
f"## Totals: {EXPECTED_UNIT} {sum_total:.2f}\n\n"
f"|{group1}|Total|\n|-|-|\n{md_rows}"
)
return msg
def format_message_all(header, costs, group1, group2, exclude_zero):
_assert_header(header)
costs_g1 = sorted(costs, key=lambda r: r[0])
m = ""
for row in costs_g1:
m += f"## {row[0]}\n\n"
m += f"|{group2}|Cost|\n|-|-|\n"
for g2, cost in zip(header[1:-1], row[1:-1]):
if not (exclude_zero and cost == 0):
m += f"|{g2}|{cost:.2f}|\n"
m += "\n"
return m
def costs_to_csv(header, costs):
s = StringIO()
writer = csv.writer(s)
writer.writerow(header)
writer.writerows(costs)
return s.getvalue()
def get_raw_cost_data(
*,
time_period,
granularity,
role_arn,
regions,
group1,
group2,
exclude_types,
include_types,
apply_value_mappings,
):
session = None
if role_arn:
# print(f"Assuming role {role_arn}")
sts = boto3.client("sts")
credentials = sts.assume_role(
RoleArn=role_arn, RoleSessionName="MsTeamsCostBot"
)["Credentials"]
session = boto3.Session(
aws_access_key_id=credentials["AccessKeyId"],
aws_secret_access_key=credentials["SecretAccessKey"],
aws_session_token=credentials["SessionToken"],
)
results, all_values1, all_values2, value_map1, value_map2 = costs_for_regions(
time_period=time_period,
granularity=granularity,
session=session,
regions=regions,
group1=group1,
group2=group2,
exclude_types=exclude_types,
include_types=include_types,
)
if apply_value_mappings:
results, all_values1, all_values2 = _apply_value_mappings(
results=results,
all_values1=all_values1,
all_values2=all_values2,
value_map1=value_map1,
value_map2=value_map2,
)
return results, all_values1, all_values2, value_map1, value_map2
def _apply_value_mappings(*, results, all_values1, all_values2, value_map1, value_map2):
"""
Apply value mappings to raw data
This is mostly for accountname.
The raw data will have the account number, so replace it with the account name (description).
"""
if value_map1:
for result in results:
for g in result["Groups"]:
g["Keys"][0] = value_map1[g["Keys"][0]]
all_values1 = set(value_map1[v] for v in all_values1)
if value_map2:
for result in results:
for g in result["Groups"]:
g["Keys"][1] = value_map2[g["Keys"][1]]
all_values2 = set(value_map2[v] for v in all_values2)
return results, all_values1, all_values2
def create_costs_message(
*,
time_period,
cost_type,
granularity,
role_arn,
regions,
title_prefix,
group1,
group2,
exclude_types,
include_types,
output,
):
results, all_values1, all_values2, value_map1, value_map2 = get_raw_cost_data(
time_period=time_period,
granularity=granularity,
role_arn=role_arn,
regions=regions,
group1=group1,
group2=group2,
exclude_types=exclude_types,
include_types=include_types,
apply_value_mappings=True,
)
header, costs = costs_to_table(
results=results,
group1=group1,
all_values1=all_values1,
all_values2=all_values2,
cost_type=cost_type,
)
summary = format_message_summarise(header, group1, costs)
full_costs_split = format_message_all(header, costs, group1, group2, True)
# Teams message length is limited, so default:
# - If this is a single AWS account show the summary and breakdown
# - If there are multiple AWS accounts and a tag is specified just show the tag breakdown combined over all accounts
# - Otherwise show the AWS account costs only
if output == "auto":
if len(all_values1) == 1 or len(all_values2) == 1:
message = summary + "\n---\n" + full_costs_split
else:
message = summary
elif output == "summary":
message = summary
elif output == "full":
message = full_costs_split
elif output == "csv":
message = costs_to_csv(header, costs)
else:
raise ValueError(f"Invalid output: {output}")
days = (
datetime.fromisoformat(time_period["End"])
- datetime.fromisoformat(time_period["Start"])
).days
if days > 1:
title = (
f"{title_prefix} {time_period['Start']} - {time_period['End']} {cost_type}"
)
else:
weekday = datetime.strftime(datetime.fromisoformat(time_period["Start"]), "%A")
title = f"{title_prefix} {time_period['Start']} ({weekday}) {cost_type}"
return message, title
def create_costs_plain_output(
*,
time_period,
cost_type,
granularity,
role_arn,
regions,
group1,
group2,
exclude_types,
include_types,
output,
):
results, all_values1, all_values2, value_map1, value_map2 = get_raw_cost_data(
time_period=time_period,
granularity=granularity,
role_arn=role_arn,
regions=regions,
group1=group1,
group2=group2,
exclude_types=exclude_types,
include_types=include_types,
apply_value_mappings=True,
)
if output == "csv":
header, costs = costs_to_table(
results=results,
group1=group1,
all_values1=all_values1,
all_values2=all_values2,
cost_type=cost_type,
)
elif output == "flat":
header, costs = costs_to_flat(
results=results,
group1=group1,
group2=group2,
cost_type=cost_type,
)
else:
raise ValueError(f"Invalid output for plain output: {output}")
output = costs_to_csv(header, costs)
return output
def _str_to_date(s):
if s and isinstance(s, str):
s = datetime.fromisoformat(s).date()
return s
def get_time_period(startdate=None, duration_days=1, enddate=None):
startdate = _str_to_date(startdate)
enddate = _str_to_date(enddate)
if startdate:
if not enddate:
enddate = startdate + timedelta(days=duration_days)
else:
if not enddate:
enddate = datetime.now().date()
startdate = enddate - timedelta(days=duration_days)
return {"Start": startdate.isoformat(), "End": enddate.isoformat()}