-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_run.py
140 lines (115 loc) · 4.3 KB
/
pytorch_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import os
import sys
import time
from contextlib import nullcontext
import numpy as np
import torch
import torch.nn as nn
from prettytable import PrettyTable
from config import ModelConfig
from data import Enwik9Loader
from pytorch_model import *
from logger import Logger
def count_parameters(model):
table = PrettyTable(["Modules", "Parameters"])
total_params = 0
for name, parameter in model.named_parameters():
if not parameter.requires_grad:
continue
params = parameter.numel()
table.add_row([name, params])
total_params += params
print(table)
print(f"Total Trainable Params: {total_params}")
return total_params
def compute_loss(lm, batch):
probs = lm(batch)
probs = probs.reshape(-1, 256)
targets = batch.reshape(-1).long()
return nn.CrossEntropyLoss()(probs, targets)
def train_epoch(lm, cfg: ModelConfig, datapath: str, pt_dtype) -> None:
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == 'float16'))
optimizer = torch.optim.Adam(lm.parameters(), cfg.learning_rate)
losses = []
t = time.time()
dataloader = list(Enwik9Loader(cfg.batch_size, cfg.seq_len, datapath))
for i, batch in enumerate(dataloader):
data = torch.tensor(batch, device="cuda").transpose(0, 1).contiguous()
with torch.amp.autocast(device_type="cuda", dtype=pt_dtype):
loss = compute_loss(lm, data)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
losses.append(loss.item())
log_per = 20
if (i + 1) % log_per == 0:
torch.cuda.synchronize()
time_elps = time.time() - t
speed = log_per * cfg.batch_size / time_elps
print(f"At iter {i+1}/{len(dataloader)}, loss: {np.mean(losses):.4f}, Speed: {speed:.2f}")
t = time.time()
losses = []
if (i + 1) > cfg.max_num_batch:
break
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="")
parser.add_argument("--num_layer", type=int, default=24)
parser.add_argument("--model", type=str, help="handcraft/torch")
parser.add_argument("--compile", type=int, default=0)
parser.add_argument("--save_dir", type=str, default="exps/pytorch")
# bfloat16 has the same range as float32, but different precision
# float16 has less range as float32, but the same precision
parser.add_argument("--dtype", type=str, default="bfloat16", help="float32/bfloat16/float16")
parser.add_argument("--flash", type=int, default=0, help="flash attn")
parser.add_argument("--xformer", type=int, default=0, help="xformer")
args = parser.parse_args()
# torch.set_float32_matmul_precision(args.fp32_precision)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
args.save_dir = f"{args.save_dir}_{args.model}_layer{args.num_layer}_{args.dtype}"
if args.compile:
args.save_dir = f"{args.save_dir}_compiled"
if args.flash:
args.save_dir = f"{args.save_dir}_flash"
pt_dtype = {
'float32': torch.float32,
'bfloat16': torch.bfloat16,
'float16': torch.float16
}[args.dtype]
logger_path = os.path.join(args.save_dir, f"train.log")
sys.stdout = Logger(logger_path, print_to_stdout=True)
logger_path = os.path.join(args.save_dir, f"train.log")
print(f"writing to {logger_path}")
sys.stdout = Logger(logger_path, print_to_stdout=True)
enwik9 = "./enwik9"
cfg = ModelConfig(
seq_len=256,
n_layers=args.num_layer,
d_model=512,
num_heads=8,
ff_dim=2048,
dropout=0.1,
batch_size=100,
learning_rate=1e-3,
max_num_batch=5000,
)
if args.model == "handcraft":
lm = HandCraftLM(cfg, args.flash, args.xformer)
# elif args.model == "torch":
# lm = TorchLM(cfg)
else:
assert False
lm = lm.cuda()
print(lm)
count_parameters(lm)
if args.compile:
lm = torch.compile(lm)
# for v in lm.parameters():
# print(
# f"\t{v.size()}".ljust(30),
# f"{abs(v.mean().item()):.2e}",
# f"{v.std().item():.2e}",
# )
train_epoch(lm, cfg, enwik9, pt_dtype)