You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I followed your instructions to get the LLaVA weights by applying the delta, but I encountered the error AssertionError: edit_head.query not in base model.
'vae.encoder.down_blocks.2.resnets.1.norm1.bias', 'unet.up_blocks.2.resnets.0.conv1.weight', 'unet.up_blocks.3.attentions.2.transformer_blocks.0.ff.net.0.proj.weight', 'unet.mid_block.resnets.1.conv1.weight', 'edit_head.mapper.decoder.layers.3.norm1.bias', 'vae.decoder.up_blocks.2.resnets.2.norm1.weight', 'unet.down_blocks.2.resnets.1.norm1.bias', 'unet.up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_out.0.weight', 'unet.down_blocks.2.attentions.1.transformer_blocks.0.attn1.to_q.weight', 'unet.up_blocks.3.attentions.0.transformer_blocks.0.ff.net.2.weight', 'unet.up_blocks.1.resnets.1.conv1.bias', 'vae.decoder.mid_block.resnets.0.conv1.bias', 'vae.decoder.conv_in.bias', 'unet.down_blocks.0.attentions.0.transformer_blocks.0.attn1.to_out.0.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
/home/gpl_homee/miniconda3/envs/mgie/lib/python3.10/site-packages/huggingface_hub/file_download.py:795: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
warnings.warn(
generation_config.json: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 137/137 [00:00<00:00, 437kB/s]
tokenizer_config.json: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 833/833 [00:00<00:00, 2.80MB/s]
tokenizer.model: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 500k/500k [00:00<00:00, 4.85MB/s]
added_tokens.json: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 88.0/88.0 [00:00<00:00, 317kB/s]
special_tokens_map.json: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 97.0/97.0 [00:00<00:00, 346kB/s]
Applying delta
Applying delta: 23%|████████████████████████████████ | 325/1388 [00:10<00:34, 30.67it/s]
Traceback (most recent call last):
File "/home/gpl_homee/miniconda3/envs/mgie/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/home/gpl_homee/miniconda3/envs/mgie/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/home/gpl_homee/indoor_scene/ml-mgie/LLaVA/llava/model/apply_delta.py", line 48, in <module>
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
File "/home/gpl_homee/indoor_scene/ml-mgie/LLaVA/llava/model/apply_delta.py", line 25, in apply_delta
assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
AssertionError: edit_head.query not in base model
I am using llava 0.2.0. Could you please advise how to resolve this issue?
Thanks!
The text was updated successfully, but these errors were encountered:
Update LLaVA code to latest main branch for delta compatibility
Switched from v0.2.0 to the main branch to ensure compatibility with the LLaVA-Lightning delta,
which requires support for the new edit_head layers and other architecture changes.
Updated installation instructions: now use pip install -e . to match the latest dependencies.
Reminder: Confirm that your base model is LLaMA-7B (and not LLaVA pretrained weights) and that
the provided paths for --base and --target are correct and writable.
For troubleshooting, refer to the LLaVA-Lightning Documentation.
This should resolve assertion failures caused by mismatched versions.
Describe the issue
Issue:
Hi,
I followed your instructions to get the LLaVA weights by applying the delta, but I encountered the error
AssertionError: edit_head.query not in base model
.Command:
Log:
I am using
llava 0.2.0
. Could you please advise how to resolve this issue?Thanks!
The text was updated successfully, but these errors were encountered: