-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
minimumPathSum.java
47 lines (40 loc) · 1.47 KB
/
minimumPathSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
// Source : https://oj.leetcode.com/problems/minimum-path-sum/
// Inspired by : http://www.jiuzhang.com/solutions/minimum-path-sum/
// Author : Lei Cao
// Date : 2015-10-12
/**********************************************************************************
*
* Given a m x n grid filled with non-negative numbers, find a path from top left to
* bottom right which minimizes the sum of all numbers along its path.
*
* Note: You can only move either down or right at any point in time.
*
**********************************************************************************/
package dynamicProgramming.minimumPathSum;
public class minimumPathSum {
/**
* @param grid: a list of lists of integers.
* @return: An integer, minimizes the sum of all numbers along its path
*/
public int minPathSum(int[][] grid) {
if (grid.length == 0 || grid[0].length == 0) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
int[][] matrix = new int[m][n];
matrix[0][0] = grid[0][0];
for (int i = 1; i < m; i++) {
matrix[i][0] = grid[i][0] + matrix[i-1][0];
}
for (int i = 1; i < n; i++) {
matrix[0][i] = grid[0][i] + matrix[0][i-1];
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
matrix[i][j] = grid[i][j] + Math.min(matrix[i-1][j], matrix[i][j-1]);
}
}
return matrix[m-1][n-1];
}
}